Metal device rapid prototyping with welding is one of the research interests at present. A controlled inertial droplet transfer MAG welding (CIDTMAGW) process was developed for the 3D steel device rapid prototyping wi...Metal device rapid prototyping with welding is one of the research interests at present. A controlled inertial droplet transfer MAG welding (CIDTMAGW) process was developed for the 3D steel device rapid prototyping with metal deposition. In this process, by using a special designed wire feeder, a controlled inertia is imposed on the droplet formed on the wire tip and combines with the arc force to make it detached. Thus, according to the requirements of rapid prototyping, the arc heat and the droplet detaching force can be separately controlled to attain a stable and satisfactory metal deposition process. A CIDTMAGW system and a testing manipulator for the 3D steel device rapid prototyping are presented. The required software is completed as well. The experiments proved that the geometric formation of the rapid prototyping device with welding deposition is well agreed the data of the device CAD modeling. The surface of the deposited device is comparatively smooth.展开更多
The present article reports the experimental Particle Image Velocimetry (PIV) investigation and the corresponding numerical simulation results about the water flow over the oscillating hydrofoil and its unsteady dyn...The present article reports the experimental Particle Image Velocimetry (PIV) investigation and the corresponding numerical simulation results about the water flow over the oscillating hydrofoil and its unsteady dynamic characters. The experimental study focuses on the effect of mean angles of attack. The comparison between the PIV results and numerical prediction about the flow field using Fluent well demonstrates the capability of CFD on the simulation of the water flow around the pitching hydrofoil. The numerical results indicate that the forced oscillating frequencies have evident effects on the flow separation and vortex shedding. The simulations about the hydrodynamic drag and lift coefficients were also performed.展开更多
An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical...An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic device. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture width ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the most expensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a numerical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model test is carried out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC and that the OD is a promising wave power device.展开更多
The history and current status of research and development of wave energy in the world is briefly introduced. The main problems existing in these studies are pointed out. The description is focused on the current stat...The history and current status of research and development of wave energy in the world is briefly introduced. The main problems existing in these studies are pointed out. The description is focused on the current status and the advancements achieved in China. After analysis of the wave energy resources and practical situations in China, it is pointed out that the studies on wave energy should be not only concentrated on the conversion efficiency and costs of wave energy devices, but also focused on the technology of independent operation and stable output of electricity. Finally, the perspectives of application of wave energy in China are discussed.展开更多
As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo...As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.展开更多
Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and ...Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases.展开更多
Fishes are famous for their ability to position themselves accurately even in turbulent flows. This ability is the result of the coordinated movement of fins which extend from the body. We have embarked on a research ...Fishes are famous for their ability to position themselves accurately even in turbulent flows. This ability is the result of the coordinated movement of fins which extend from the body. We have embarked on a research program designed to develop an agile and high efficient biologically inspired robotic fish based on the performance of hybrid mechanical fms. To accomplish this goal, a mechanical ray-like fin actuated by Shape Memory Alloy (SMA) is developed, which can realize both oscillatory locomotion and undulatory locomotion. We first give a brief introduction on the mechanical structure of our fin and then carry out theoretic analysis on force generation. Detailed information of these theoretical results is later revealed by Computational Huid Dynamic (CFD), and is final validated by experiments. This robotic fin has potential application as a propulsor for future underwater vehicles in addition to being a valuable scientific instrument.展开更多
The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E...The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.展开更多
The structure and dynamics of an oblique shock train in a duct model are investigated experimentally in a hypersonic wind tunnel.Measurements of the pressure distribution in front of and across the oblique shock train...The structure and dynamics of an oblique shock train in a duct model are investigated experimentally in a hypersonic wind tunnel.Measurements of the pressure distribution in front of and across the oblique shock train have been taken and the dynamics of upstream propagation of the oblique shock train have been analyzed from the synchronized schlieren imaging with the dynamic pressure measurements.The formation and propagation of the oblique shock train are initiated by the throttling device at the downstream end of the duct model.Multiple reflected shocks,expansion fans and separated flow bubbles exist in the unthrottled flow,causing three adversepressure-gradient phases and three favorable-pressure-gradient phases upstream the oblique shock train.The leading edge of the oblique shock train propagates upstream,and translates to be asymmetric with the increase of backpressure.The upstream propagation rate of the oblique shock train increases rapidly when the leading edge of the oblique shock train encounters the separation bubble near the shock reflection point and the adverse-pressure-gradient phase,while the oblique shock train slow movement when the leading edge of the oblique shock train is in the favorablepressure-gradient phase for unthrottled flow.The asymmetric flow pattern and oscillatory nature of the oblique shock train are observed throughout the whole upstream propagation process.展开更多
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numeri...Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.展开更多
Oscillating flow around a circular cylinder in the vicinity of a plane wall was investigated by solving the two-dimensional incompressible Navier-Stokes equations with a finite element Galarkin residual method. The ef...Oscillating flow around a circular cylinder in the vicinity of a plane wall was investigated by solving the two-dimensional incompressible Navier-Stokes equations with a finite element Galarkin residual method. The effect of the gap G/D between the cylinder surface and the wall on the flow behavior was studied. For the case of G/D 〈 0.25, the periodicity in the flow is attributed to both the outer shear layer instability and the oscillating frequency. As G/D 〉 0.25, vortex shedding occurs and the periodicity in the flow is mainly due to the competition of the oscillating frcqucncy and the vortex shedding frequency from an isolated stationary cylinder.展开更多
It has been found that the two-phase reactions of aqueous HCl, HOAc or H_3PO_4 with primary amine N_ 1923 in chloroform are oscillating reactions. Their power-time curves were measured by the titration microcalorimet...It has been found that the two-phase reactions of aqueous HCl, HOAc or H_3PO_4 with primary amine N_ 1923 in chloroform are oscillating reactions. Their power-time curves were measured by the titration microcalorimetric method, and the induction period (t_ in). The first oscillating period (t_ p.1) and the second oscillating period (t_ p.2) were determined. The apparent activating parameters and the orders of the oscillating systems were calculated and the following relationships were established: for the oscillating system of hydrochloric acid t_ in∝c 0.147_ HClexp(1.35×10 3T), t_ p.1∝c 0.241_ HCl· exp(4.33×10 3T), t_ p.2∝c 0.290_ HClexp(5.59×10 3T); for the oscillating system of acetic acid, t_ in∝c 0.883_ HOAcexp(2.32×10 3T), t_ p.1∝c 0.399_ HOAc· exp(4.50×10 3T), t_ p.2∝c 0.301_ HOAcexp(5.88×10 3T); for the oscillating system of phosphoric acid, t_ in∝c 1.14_ H_3PO_4exp(7.70×10 4T), t_ p.1∝c 1.42_ H_3PO_4exp(1.14×10 4T), t_ p.2∝c 1.47_ H_3PO_4exp(1.27×10 4T).展开更多
The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the stand...The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon. which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the Bred pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths For different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.展开更多
This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers th...This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed.展开更多
Increasing degrees of freedom(DOFs)is a useful way to raise the power capture efficiency of oscillating wave energy converters.Thus,this study proposes a buoy with three DOFs,which are surge,heave,and pitch.The hydrod...Increasing degrees of freedom(DOFs)is a useful way to raise the power capture efficiency of oscillating wave energy converters.Thus,this study proposes a buoy with three DOFs,which are surge,heave,and pitch.The hydrodynamic performance and power capture efficiency of the buoy is physically modeled.Amplitudes of unidirectional and coupled motions are compared to analyze the interaction effect between freedoms under conditions with and without power take-off damping.The capture width ratio and corresponding growth rates are also calculated.Results show that the buoy makes a periodic sinusoidal(or approximate)movement in every DOF.Coupling effect can cause an increase in the amplitude in one DOF and a decrease in the amplitudes of the others.This phenomenon shows that the kinematic energy of the buoy redistributes to all DOFs compared with the unidirectional conditions.Adding DOFs can improve the power absorption of the buoy in most cases,but the number of DOFs is not the more the better.展开更多
文摘Metal device rapid prototyping with welding is one of the research interests at present. A controlled inertial droplet transfer MAG welding (CIDTMAGW) process was developed for the 3D steel device rapid prototyping with metal deposition. In this process, by using a special designed wire feeder, a controlled inertia is imposed on the droplet formed on the wire tip and combines with the arc force to make it detached. Thus, according to the requirements of rapid prototyping, the arc heat and the droplet detaching force can be separately controlled to attain a stable and satisfactory metal deposition process. A CIDTMAGW system and a testing manipulator for the 3D steel device rapid prototyping are presented. The required software is completed as well. The experiments proved that the geometric formation of the rapid prototyping device with welding deposition is well agreed the data of the device CAD modeling. The surface of the deposited device is comparatively smooth.
基金the Underwater Vehicle Research Center of Korea (Grant No. SM-42)
文摘The present article reports the experimental Particle Image Velocimetry (PIV) investigation and the corresponding numerical simulation results about the water flow over the oscillating hydrofoil and its unsteady dynamic characters. The experimental study focuses on the effect of mean angles of attack. The comparison between the PIV results and numerical prediction about the flow field using Fluent well demonstrates the capability of CFD on the simulation of the water flow around the pitching hydrofoil. The numerical results indicate that the forced oscillating frequencies have evident effects on the flow separation and vortex shedding. The simulations about the hydrodynamic drag and lift coefficients were also performed.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.59979025),the High Tech Research and Development(863)Program(Grant No.2001AA516010)and the Science&Technology Program of Guangdong(C32004)
文摘An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic device. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture width ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the most expensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a numerical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model test is carried out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC and that the OD is a promising wave power device.
文摘The history and current status of research and development of wave energy in the world is briefly introduced. The main problems existing in these studies are pointed out. The description is focused on the current status and the advancements achieved in China. After analysis of the wave energy resources and practical situations in China, it is pointed out that the studies on wave energy should be not only concentrated on the conversion efficiency and costs of wave energy devices, but also focused on the technology of independent operation and stable output of electricity. Finally, the perspectives of application of wave energy in China are discussed.
基金Project(531107040300) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(2006BAJ04B04) supported by the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period of China
文摘As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.
基金Supported by the Natural Science Foundation of Ministry of Education of Jiangsu Province (02KJB470001).
文摘Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases.
文摘Fishes are famous for their ability to position themselves accurately even in turbulent flows. This ability is the result of the coordinated movement of fins which extend from the body. We have embarked on a research program designed to develop an agile and high efficient biologically inspired robotic fish based on the performance of hybrid mechanical fms. To accomplish this goal, a mechanical ray-like fin actuated by Shape Memory Alloy (SMA) is developed, which can realize both oscillatory locomotion and undulatory locomotion. We first give a brief introduction on the mechanical structure of our fin and then carry out theoretic analysis on force generation. Detailed information of these theoretical results is later revealed by Computational Huid Dynamic (CFD), and is final validated by experiments. This robotic fin has potential application as a propulsor for future underwater vehicles in addition to being a valuable scientific instrument.
文摘The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.
基金supported by the National Natural Science Foundation of China(Nos.51476076 and 10702029)
文摘The structure and dynamics of an oblique shock train in a duct model are investigated experimentally in a hypersonic wind tunnel.Measurements of the pressure distribution in front of and across the oblique shock train have been taken and the dynamics of upstream propagation of the oblique shock train have been analyzed from the synchronized schlieren imaging with the dynamic pressure measurements.The formation and propagation of the oblique shock train are initiated by the throttling device at the downstream end of the duct model.Multiple reflected shocks,expansion fans and separated flow bubbles exist in the unthrottled flow,causing three adversepressure-gradient phases and three favorable-pressure-gradient phases upstream the oblique shock train.The leading edge of the oblique shock train propagates upstream,and translates to be asymmetric with the increase of backpressure.The upstream propagation rate of the oblique shock train increases rapidly when the leading edge of the oblique shock train encounters the separation bubble near the shock reflection point and the adverse-pressure-gradient phase,while the oblique shock train slow movement when the leading edge of the oblique shock train is in the favorablepressure-gradient phase for unthrottled flow.The asymmetric flow pattern and oscillatory nature of the oblique shock train are observed throughout the whole upstream propagation process.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50909089 and 40911140281)Qingdao S&T Development Program(09-1-3-41-jch)Korean Ministry of Land,Transport & Maritime Affairs through KORDI Program
文摘Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.
基金the National Engineering and Scientific Commission of Pakistan, the Innovation Project of the Chinese Academy of Sciences (Grant No. JCX2-YW- L05).
文摘Oscillating flow around a circular cylinder in the vicinity of a plane wall was investigated by solving the two-dimensional incompressible Navier-Stokes equations with a finite element Galarkin residual method. The effect of the gap G/D between the cylinder surface and the wall on the flow behavior was studied. For the case of G/D 〈 0.25, the periodicity in the flow is attributed to both the outer shear layer instability and the oscillating frequency. As G/D 〉 0.25, vortex shedding occurs and the periodicity in the flow is mainly due to the competition of the oscillating frcqucncy and the vortex shedding frequency from an isolated stationary cylinder.
基金ProjectsupportedbytheNaturalScienceFoundationofShandongProvince (No .Y2 0 0 0B0 3)
文摘It has been found that the two-phase reactions of aqueous HCl, HOAc or H_3PO_4 with primary amine N_ 1923 in chloroform are oscillating reactions. Their power-time curves were measured by the titration microcalorimetric method, and the induction period (t_ in). The first oscillating period (t_ p.1) and the second oscillating period (t_ p.2) were determined. The apparent activating parameters and the orders of the oscillating systems were calculated and the following relationships were established: for the oscillating system of hydrochloric acid t_ in∝c 0.147_ HClexp(1.35×10 3T), t_ p.1∝c 0.241_ HCl· exp(4.33×10 3T), t_ p.2∝c 0.290_ HClexp(5.59×10 3T); for the oscillating system of acetic acid, t_ in∝c 0.883_ HOAcexp(2.32×10 3T), t_ p.1∝c 0.399_ HOAc· exp(4.50×10 3T), t_ p.2∝c 0.301_ HOAcexp(5.88×10 3T); for the oscillating system of phosphoric acid, t_ in∝c 1.14_ H_3PO_4exp(7.70×10 4T), t_ p.1∝c 1.42_ H_3PO_4exp(1.14×10 4T), t_ p.2∝c 1.47_ H_3PO_4exp(1.27×10 4T).
基金The project was supported by the National Natural Science Foundation of China (19772065) the Key Project (KZ951 -A 1 -405) of "Ninth Five-year Plan" of Chinese Academy of Sciences
文摘The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon. which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the Bred pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths For different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.
文摘This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed.
基金the support of the National Key R&D Program of China (No. 2018YFB1501900)the National Natural Science Fund of China (No. 41706100)+3 种基金the Shandong Provincial Natural Science Key Basic Program (No. ZR2017ZA 0202)the Special Projects for Marine Renewable Energy (No. GHME2016YY02)the Shandong Provincial Key Laboratory of Ocean Engineeringthe Qingdao Municipal Key Laboratory of Ocean Renewable Energy
文摘Increasing degrees of freedom(DOFs)is a useful way to raise the power capture efficiency of oscillating wave energy converters.Thus,this study proposes a buoy with three DOFs,which are surge,heave,and pitch.The hydrodynamic performance and power capture efficiency of the buoy is physically modeled.Amplitudes of unidirectional and coupled motions are compared to analyze the interaction effect between freedoms under conditions with and without power take-off damping.The capture width ratio and corresponding growth rates are also calculated.Results show that the buoy makes a periodic sinusoidal(or approximate)movement in every DOF.Coupling effect can cause an increase in the amplitude in one DOF and a decrease in the amplitudes of the others.This phenomenon shows that the kinematic energy of the buoy redistributes to all DOFs compared with the unidirectional conditions.Adding DOFs can improve the power absorption of the buoy in most cases,but the number of DOFs is not the more the better.
文摘为了提高柑橘采摘速度和采摘效率,提出一种采摘机器人在柑橘扰动并伴有遮挡状态下的快速动态识别方法.首先对所采集的两帧图像进行分析,通过颜色空间的选取以及阈值分割,将水果与背景进行分离;其次通过帧间差分法、水平最小外接矩形法、正方形内切圆法将处于扰动状态下的水果标识出来,然后对振荡水果进行识别.试验结果表明:该算法能很好地适应采摘机器人实际工作中碰到的、各种原因引起的水果扰动及遮挡现象;单个扰动水果算法识别时间小于0.4 s.