Lodging has been a major roadblock to attaining increased crop productivity. In an attempt to understand the mechanism for culm strength in rice, we isolated an effective quantitative trait locus (QTL), STRONG CULM3...Lodging has been a major roadblock to attaining increased crop productivity. In an attempt to understand the mechanism for culm strength in rice, we isolated an effective quantitative trait locus (QTL), STRONG CULM3 (SCM3), the causal gene of which is identical to rice TEOSINTE BRANCHED1 (OsTB1), a gene previously reported to positively control strigolactone (SL) signaling. A near-isogenic line (NIL) carrying SCM3 showed enhanced culm strength and increased spikelet number despite the expected decrease in tiller number, indicating that SL also has a positive role in enhancing culm strength and spikelet number. We produced a pyramiding line carrying SCM3 and SCM2, another QTL encoding AP01 involved in panicle development. The NIL-SCM2+SCM3 showed a much stronger culm than NIL-SCM2 and NIL-SCM3 and an increased spikelet number caused by the additive effect of these QTLs. We discuss the importance of utilizing suitable alleles of these STRONG CULM QTLs without inducing detrimental traits for breeding.展开更多
Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high ti...Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high tillering and semi-dwarf 1(htsd1)mutant with auxin-deficiency root characteristics,such as shortened lateral roots,reduced lateral root density,and enlarged root angles.htsd1 showed reduced sensitivity to auxin,but the external application of indole-3-acetic acid(IAA)inhibited its tillering.We identified the mutated gene in htsd1 as AUXIN1(OsAUX1,LOC_Os01g63770),which encodes an auxin influx transporter.The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)binding sites,and we demonstrated that SPL7 binds to the OsAUX1 promoter.TEOSINTE BRANCHED1(OsTB1),a key gene that negatively regulates tillering,was significantly downregulated in htsd1.Tillering was enhanced in the OsTB1 knockout mutant,and the external application of IAA inhibited tiller elongation in this mutant.Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.展开更多
文摘Lodging has been a major roadblock to attaining increased crop productivity. In an attempt to understand the mechanism for culm strength in rice, we isolated an effective quantitative trait locus (QTL), STRONG CULM3 (SCM3), the causal gene of which is identical to rice TEOSINTE BRANCHED1 (OsTB1), a gene previously reported to positively control strigolactone (SL) signaling. A near-isogenic line (NIL) carrying SCM3 showed enhanced culm strength and increased spikelet number despite the expected decrease in tiller number, indicating that SL also has a positive role in enhancing culm strength and spikelet number. We produced a pyramiding line carrying SCM3 and SCM2, another QTL encoding AP01 involved in panicle development. The NIL-SCM2+SCM3 showed a much stronger culm than NIL-SCM2 and NIL-SCM3 and an increased spikelet number caused by the additive effect of these QTLs. We discuss the importance of utilizing suitable alleles of these STRONG CULM QTLs without inducing detrimental traits for breeding.
基金This work was supported by the National Key Research and Development Program of China(2022YFD1201600)the National Natural Science Foundation of China(32171964)the Science Fund for Creative Research Groups of Chongqing,China(cstc2021jcyj-cxttX0004)。
文摘Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high tillering and semi-dwarf 1(htsd1)mutant with auxin-deficiency root characteristics,such as shortened lateral roots,reduced lateral root density,and enlarged root angles.htsd1 showed reduced sensitivity to auxin,but the external application of indole-3-acetic acid(IAA)inhibited its tillering.We identified the mutated gene in htsd1 as AUXIN1(OsAUX1,LOC_Os01g63770),which encodes an auxin influx transporter.The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)binding sites,and we demonstrated that SPL7 binds to the OsAUX1 promoter.TEOSINTE BRANCHED1(OsTB1),a key gene that negatively regulates tillering,was significantly downregulated in htsd1.Tillering was enhanced in the OsTB1 knockout mutant,and the external application of IAA inhibited tiller elongation in this mutant.Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.