Grain weight and quality are always determined by grain filling.Plant microRNAs have drawn attention as key targets for regulation of grain size and yield.However,the mechanisms that underlie grain size regulation rem...Grain weight and quality are always determined by grain filling.Plant microRNAs have drawn attention as key targets for regulation of grain size and yield.However,the mechanisms that underlie grain size regulation remain largely unclear because of the complex networks that control this trait.Our earlier studies demonstrated that suppressed expression of miR167(STTM/MIM167)substantially increased grain weight.In a field test,the yield increased up to 12.90%-21.94% because of a significantly enhanced grain filling rate.Here,biochemical and genetic analyses revealed the regulatory effects of miR159 on miR167 expression.Further analysis indicated that OsARF12 is the major mediator by which miR167 regulates rice grain filling.Overexpression of OsARF12 produced grain weight and grain filling phenotypes resembling those of STTM/MIM167 plants.Upon in-depth analysis,we found that OsARF12 activates OsCDKF;2 expression by directly binding to the TGTCGG motif in its promoter region.Flow cytometry analysis of young panicles from OsARF12-overexpressing plants and examination of cell number in cdkf;2 mutants verified that OsARF12 positively regulates grain filling and grain size by targeting OsCDKF;2.Moreover,RNA sequencing results suggested that the miR167-OsARF12 module is involved in the cell development process and hormone pathways.OsARF12-overexpressing plants and cdkf;2 mutants exhibited enhanced and reduced sensitivity to exogenous auxin and brassinosteroid(BR)treatment,confirming that targeting of OsCDKF;2 by OsARF12 mediates auxin and BR signaling.Our results reveal that the miR167-OsARF12 module works downstream of miR159 to regulate rice grain filling and grain size via OsCDKF;2 by controlling cell division and mediating auxin and BR signals.展开更多
基金funded by the National Natural Science Foundation of China(NSFC,32272014,32001440,31971846,and 31871554)the Natural Science Foundation of Henan Province-Excellent Youth Fund(222300420049)+2 种基金the Central Plains Talents Program of Henan Province(Talent Training Series)-Top Young Talents in Central Plains(ZYY-CYU202012170)the Support Plan for Scientific and Technological Innovation Talents in Colleges and Universities of Henan Province(21HAS-TIT037)the China Postdoctoral Science Foundation(2020M682294).
文摘Grain weight and quality are always determined by grain filling.Plant microRNAs have drawn attention as key targets for regulation of grain size and yield.However,the mechanisms that underlie grain size regulation remain largely unclear because of the complex networks that control this trait.Our earlier studies demonstrated that suppressed expression of miR167(STTM/MIM167)substantially increased grain weight.In a field test,the yield increased up to 12.90%-21.94% because of a significantly enhanced grain filling rate.Here,biochemical and genetic analyses revealed the regulatory effects of miR159 on miR167 expression.Further analysis indicated that OsARF12 is the major mediator by which miR167 regulates rice grain filling.Overexpression of OsARF12 produced grain weight and grain filling phenotypes resembling those of STTM/MIM167 plants.Upon in-depth analysis,we found that OsARF12 activates OsCDKF;2 expression by directly binding to the TGTCGG motif in its promoter region.Flow cytometry analysis of young panicles from OsARF12-overexpressing plants and examination of cell number in cdkf;2 mutants verified that OsARF12 positively regulates grain filling and grain size by targeting OsCDKF;2.Moreover,RNA sequencing results suggested that the miR167-OsARF12 module is involved in the cell development process and hormone pathways.OsARF12-overexpressing plants and cdkf;2 mutants exhibited enhanced and reduced sensitivity to exogenous auxin and brassinosteroid(BR)treatment,confirming that targeting of OsCDKF;2 by OsARF12 mediates auxin and BR signaling.Our results reveal that the miR167-OsARF12 module works downstream of miR159 to regulate rice grain filling and grain size via OsCDKF;2 by controlling cell division and mediating auxin and BR signals.