Objective:To investigate the multienzyine complex formation of human malaria parasite Plasmodium falciparum[P.falciparum)orotate phosphoribosyltransferase(OPRT)and orotidine5'-monophosphate decarboxylase(OMPDC),th...Objective:To investigate the multienzyine complex formation of human malaria parasite Plasmodium falciparum[P.falciparum)orotate phosphoribosyltransferase(OPRT)and orotidine5'-monophosphate decarboxylase(OMPDC),the fifth and sixth enzyme of the de novo pyrimidine biosynthetic palhway.Previously,we have clearly established that the two enzymes in the malaria parasite exist physically as a heterotetrameric(OPRT)_2(OMPDG)_2 complex containing two subunits each of OPRT and OMPDC.and that the complex have catalytic kinetic advantages over the monofunetional enzyme.Methods:Both enzymes were cloned and expressed as recombinant proteins.The protein-protein interaction in the enzyme complex was identified using bifunctionul chemical cross-linker,liquid chromatography-mass spectrometric analysis and homology modeling,Results:The unique insertions of low complexity region at the a 2 and a 5 helices of the parasite OMPDC,characterized by single amino acid repeat sequence which was not found in homologous proteins from other organisms,was located on the OPRT-OMPDC interface.The structural models for the protein-prolein interaction of the helerotetrameric(OPRT)_2(OMPDC)_2multienzyme complex were proposed.Conclusions:Based on the proteomic data and structural modeling,it is surmised that the human malaria parasite low complexity region is responsible for the OPRT-OMPDC interaction.The structural complex of the parasite enzymes,thus,represents an efficient functional kinetic advantage,which in line with co-localization principles of evolutional origin,and allosteric control in protein-protein-interactions.展开更多
Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5...Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5'-monophosphate (OMP) to uridine 5'-mono- phosphate. The enzyme is found in all three domains of life, Bacteria, Eukarya and Archaea. Multiple sequence alignment of 750 putative ODCase sequences resulted in five distinct groups. While the universally conserved DxKxxDx motif is present in all the groups, depending on the groups, several characteristic motifs and residues can be identified. Over 200 crystal structures of ODCases have been determined so far. The structures, together with biochemical assays and computational studies, elucidated that ODCase utilized both transition state stabilization and substrate distortion to accelerate the decarboxylation of its natural substrate. Stabilization of the vinyl anion intermediate by a conserved lysine residue at the catalytic site is considered the largest contributing factor to catalysis, while bending of the carboxyl group from the plane of the aromatic pyrimidine ring of OMP accounts for substrate distortion. A number of crystal structures of ODCases complexed with potential drug candidate molecules have also been determined, including with 6-iodo- uridine, a potential antimalarial agent.展开更多
Tight control of the intracellular uracil level is believed to be important to reduce the occurrence of uracil incorporation into DNA. The pyrG gene ofAspergillus niduIans encodes orotidine 5'-phosphate decarboxylase...Tight control of the intracellular uracil level is believed to be important to reduce the occurrence of uracil incorporation into DNA. The pyrG gene ofAspergillus niduIans encodes orotidine 5'-phosphate decarboxylase, which catalyzes the conversion of orotidine monophosphate (OMP) to uridine monophosphate (UMP). In this study, we found that pyrG is critical for maintaining uracil at a low concentration in A. nidulans cells in the presence of exogenous uracil. Excess uracil and its derivatives had a stronger inhibitory effect on the growth of the pyrG89 mutant with defective OMP decarboxylase activity than on the growth of wild type, and induced sexual development in the pyrG89 mutant but not in wild type. Analysis of transcriptomic responses to excess uracil by digital gene expression profiling (DGE) revealed that genes related to sexual development were transcrip- tionally activated in the pyrG89 mutant but not in wild type. Quantitative analysis by HPLC showed that the cellular uracil level was 6.5 times higher in the pyrG89 mutant than in wild type in the presence of exogenous uracil. This study not only provides new information on uracil recycling and adaptation to excess uracil but also reveals the potential effects of OMP decarboxylase on fungal growth and development.展开更多
Background Toxoplasma gondii is an obligate intracellular apicomplexan parasite and is responsible for zoonotic toxoplasmosis.It is essential to develop an effective anti-T.gondii vaccine for the control of toxoplasmo...Background Toxoplasma gondii is an obligate intracellular apicomplexan parasite and is responsible for zoonotic toxoplasmosis.It is essential to develop an effective anti-T.gondii vaccine for the control of toxoplasmosis,and this study is to explore the immunoprotective effects of a live attenuated vaccine in mice and cats.Methods First,theompdc anduprt genes of T.gondii were deleted through the CRISPR-Cas9 system.Then,the intracellular proliferation and virulence of this mutant strain were evaluated.Subsequently,the immune responses induced by this mutant in mice and cats were detected,including antibody titers,cytokine levels,and subsets of T lymphocytes.Finally,the immunoprotective effects were evaluated by challenge with tachyzoites of different strains in mice or cysts of the ME49 strain in cats.Furthermore,to discover the effective immune element against toxoplasmosis,passive immunizations were carried out.GraphPad Prism software was used to conduct the log-rank(Mantel–Cox)test,Student’st test and one-way ANOVA.Results The RHΔompdcΔuprt were constructed by the CRISPR-Cas9 system.Compared with the wild-type strain,the mutant notably reduced proliferation(P<0.05).In addition,the mutant exhibited virulence attenuation in both murine(BALB/c and BALB/c-nu)and cat models.Notably,limited pathological changes were found in tissues from RHΔompdcΔuprt-injected mice.Furthermore,compared with nonimmunized group,high levels of IgG(IgG1 and IgG2a)antibodies and cytokines(IFN-γ,IL-4,IL-10,IL-2 and IL-12)in mice were detected by the mutant(P<0.05).Remarkably,all RHΔompdcΔuprt-vaccinated mice survived a lethal challenge with RHΔku80 and ME49 and WH6 strains.The immunized sera and splenocytes,especially CD8^(+)T cells,could significantly extend(P<0.05)the survival time of mice challenged with the RHΔku80 strain compared with naïve mice.In addition,compared with nonimmunized cats,cats immunized with the mutant produced high levels of antibodies and cytokines(P<0.05),and notably decreased the shedding numbers of 展开更多
基金supported in part by Faculty of Graduate School(to W.L)Faculty of Medicine(contract no. RAH/54(1) to J.K.),Chulalongkorn University
文摘Objective:To investigate the multienzyine complex formation of human malaria parasite Plasmodium falciparum[P.falciparum)orotate phosphoribosyltransferase(OPRT)and orotidine5'-monophosphate decarboxylase(OMPDC),the fifth and sixth enzyme of the de novo pyrimidine biosynthetic palhway.Previously,we have clearly established that the two enzymes in the malaria parasite exist physically as a heterotetrameric(OPRT)_2(OMPDG)_2 complex containing two subunits each of OPRT and OMPDC.and that the complex have catalytic kinetic advantages over the monofunetional enzyme.Methods:Both enzymes were cloned and expressed as recombinant proteins.The protein-protein interaction in the enzyme complex was identified using bifunctionul chemical cross-linker,liquid chromatography-mass spectrometric analysis and homology modeling,Results:The unique insertions of low complexity region at the a 2 and a 5 helices of the parasite OMPDC,characterized by single amino acid repeat sequence which was not found in homologous proteins from other organisms,was located on the OPRT-OMPDC interface.The structural models for the protein-prolein interaction of the helerotetrameric(OPRT)_2(OMPDC)_2multienzyme complex were proposed.Conclusions:Based on the proteomic data and structural modeling,it is surmised that the human malaria parasite low complexity region is responsible for the OPRT-OMPDC interaction.The structural complex of the parasite enzymes,thus,represents an efficient functional kinetic advantage,which in line with co-localization principles of evolutional origin,and allosteric control in protein-protein-interactions.
基金partly supported by a Grant-in-Aid for Scientific Research (C) (24570130 to M.F.). E.F.P.support through a Canada Research Chair. L.P.K.+3 种基金the funding support over the years from Canadian Institutes of Health Research (MOP62704 to EFP and LPK DDP-79122 to LPK, KCK and EFP) ISTPCanada (ICRD08-15)Ministry of Research and Innovation (Ontario, Canada) and Bio Discovery Toronto
文摘Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5'-monophosphate (OMP) to uridine 5'-mono- phosphate. The enzyme is found in all three domains of life, Bacteria, Eukarya and Archaea. Multiple sequence alignment of 750 putative ODCase sequences resulted in five distinct groups. While the universally conserved DxKxxDx motif is present in all the groups, depending on the groups, several characteristic motifs and residues can be identified. Over 200 crystal structures of ODCases have been determined so far. The structures, together with biochemical assays and computational studies, elucidated that ODCase utilized both transition state stabilization and substrate distortion to accelerate the decarboxylation of its natural substrate. Stabilization of the vinyl anion intermediate by a conserved lysine residue at the catalytic site is considered the largest contributing factor to catalysis, while bending of the carboxyl group from the plane of the aromatic pyrimidine ring of OMP accounts for substrate distortion. A number of crystal structures of ODCases complexed with potential drug candidate molecules have also been determined, including with 6-iodo- uridine, a potential antimalarial agent.
基金supported by the National Natural Science Foundation of China(31000551 to Sun XianYun,31170087 to Li ShaoJie)a grant from the "100 Talent Program" from Chinese Academy of Sciences to Li ShaoJie
文摘Tight control of the intracellular uracil level is believed to be important to reduce the occurrence of uracil incorporation into DNA. The pyrG gene ofAspergillus niduIans encodes orotidine 5'-phosphate decarboxylase, which catalyzes the conversion of orotidine monophosphate (OMP) to uridine monophosphate (UMP). In this study, we found that pyrG is critical for maintaining uracil at a low concentration in A. nidulans cells in the presence of exogenous uracil. Excess uracil and its derivatives had a stronger inhibitory effect on the growth of the pyrG89 mutant with defective OMP decarboxylase activity than on the growth of wild type, and induced sexual development in the pyrG89 mutant but not in wild type. Analysis of transcriptomic responses to excess uracil by digital gene expression profiling (DGE) revealed that genes related to sexual development were transcrip- tionally activated in the pyrG89 mutant but not in wild type. Quantitative analysis by HPLC showed that the cellular uracil level was 6.5 times higher in the pyrG89 mutant than in wild type in the presence of exogenous uracil. This study not only provides new information on uracil recycling and adaptation to excess uracil but also reveals the potential effects of OMP decarboxylase on fungal growth and development.
基金supported by the National Natural Science Foundation of China(No.81871684,No.81802037)the Provincial Key R&D program of Zhejiang Department of Science and Technology(No.2019C03057)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LY22H190003)the Zhejiang Medical and Health Science and Technology Plan(WKJ-ZJ-2203)the Central Leading Local Science and Technology Development Fund Project(2023ZY1019)the Key Discipline of Zhejiang Province in Public Health and Preventive Medicine(First Class,Category A),Hangzhou Medical College.
文摘Background Toxoplasma gondii is an obligate intracellular apicomplexan parasite and is responsible for zoonotic toxoplasmosis.It is essential to develop an effective anti-T.gondii vaccine for the control of toxoplasmosis,and this study is to explore the immunoprotective effects of a live attenuated vaccine in mice and cats.Methods First,theompdc anduprt genes of T.gondii were deleted through the CRISPR-Cas9 system.Then,the intracellular proliferation and virulence of this mutant strain were evaluated.Subsequently,the immune responses induced by this mutant in mice and cats were detected,including antibody titers,cytokine levels,and subsets of T lymphocytes.Finally,the immunoprotective effects were evaluated by challenge with tachyzoites of different strains in mice or cysts of the ME49 strain in cats.Furthermore,to discover the effective immune element against toxoplasmosis,passive immunizations were carried out.GraphPad Prism software was used to conduct the log-rank(Mantel–Cox)test,Student’st test and one-way ANOVA.Results The RHΔompdcΔuprt were constructed by the CRISPR-Cas9 system.Compared with the wild-type strain,the mutant notably reduced proliferation(P<0.05).In addition,the mutant exhibited virulence attenuation in both murine(BALB/c and BALB/c-nu)and cat models.Notably,limited pathological changes were found in tissues from RHΔompdcΔuprt-injected mice.Furthermore,compared with nonimmunized group,high levels of IgG(IgG1 and IgG2a)antibodies and cytokines(IFN-γ,IL-4,IL-10,IL-2 and IL-12)in mice were detected by the mutant(P<0.05).Remarkably,all RHΔompdcΔuprt-vaccinated mice survived a lethal challenge with RHΔku80 and ME49 and WH6 strains.The immunized sera and splenocytes,especially CD8^(+)T cells,could significantly extend(P<0.05)the survival time of mice challenged with the RHΔku80 strain compared with naïve mice.In addition,compared with nonimmunized cats,cats immunized with the mutant produced high levels of antibodies and cytokines(P<0.05),and notably decreased the shedding numbers of