[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading ...[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading bacteria HB8 and HF1 were mixed with a commercially available microbial composting agent, respectively, for the composting of spent P. ostreatus substrate. Mung beans were cultivated with different proportions of spent mushroom substrate compost and soil. The seed germination rate, plant height, fresh weight and chlorophyll content of mung bean were used as indicators to investigate the effects of the organic fertilizer from spent P. ostreatus substrate on the growth of mung bean seedlings. [Results] The addition of cellulose-degrading bacteria can significantly improve the composting effect of the spent mushroom substrate. After 8 d of cultivation of mung beans with different ratios of the mushroom substrate organic fertilizer, 50% of the organic fertilizer can make the plant height, fresh weight and leaf chlorophyll content of mung bean seedlings reach the highest value and was suitable for mung bean breeding and cultivation. [Conclusions] This study provides scientific basis and technical indicators for the rapid and harmless treatment of spent mushroom substrate and its application in crop cultivation and nursery.展开更多
基金Supported by Scientific Research Fund of Hunan Provincial Education Department(15C0721)Hunan Provincial Innovation Platform Open Fund Project(16K047)Hunan Provincial Construct Program of the Key Discipline
文摘[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading bacteria HB8 and HF1 were mixed with a commercially available microbial composting agent, respectively, for the composting of spent P. ostreatus substrate. Mung beans were cultivated with different proportions of spent mushroom substrate compost and soil. The seed germination rate, plant height, fresh weight and chlorophyll content of mung bean were used as indicators to investigate the effects of the organic fertilizer from spent P. ostreatus substrate on the growth of mung bean seedlings. [Results] The addition of cellulose-degrading bacteria can significantly improve the composting effect of the spent mushroom substrate. After 8 d of cultivation of mung beans with different ratios of the mushroom substrate organic fertilizer, 50% of the organic fertilizer can make the plant height, fresh weight and leaf chlorophyll content of mung bean seedlings reach the highest value and was suitable for mung bean breeding and cultivation. [Conclusions] This study provides scientific basis and technical indicators for the rapid and harmless treatment of spent mushroom substrate and its application in crop cultivation and nursery.