Metal-organic frameworks (MOFs) have been emerging as important multifunctional hybrid materials, not only due to the diversify framework architectures, but also contribute to the rich interactions among metals, lig...Metal-organic frameworks (MOFs) have been emerging as important multifunctional hybrid materials, not only due to the diversify framework architectures, but also contribute to the rich interactions among metals, ligands and guests. Nitro explosives have important influences tbr environmental protection and national homeland security, in this review, a brief description of luminescent MOFs is presented, accompanied by a short comment on the four types of metal-based luminescent MOFs as sensing materials for nitro explosives detection. Then the trends and challenges of luminescent MOFs as sensing materials ibr nitro explosives are also prospected.展开更多
In this article, a detection method for organic explosives by capillary electrophoresis (CE) is developed based on previous detection techniques. Firstly, a buffer solution consisting of 50 mmol·L-1 sodium dodecy...In this article, a detection method for organic explosives by capillary electrophoresis (CE) is developed based on previous detection techniques. Firstly, a buffer solution consisting of 50 mmol·L-1 sodium dodecyl sulfate (SDS), 20 mmol·L-1 sodium tetraborate and 5% methanol was prepared and the UV detection in this buffer solution was conducted for three common organic explosives, including TNT, DNT and PETN. Then, the capillary UV detection method was investigated in terms of the transition time repeatability, the linear relationship between mass concentration and peak area and the limit of detection. The results revealed good reliability and stability of this method. In addition, these samples were characterized by photodiode array detector (PDA) to verify the qualitative results of UV detection.展开更多
In this work, a new porous Zrobased metal-organic framework (MOF) with a large Brunner-Emmet-Teller (BET) surface area was prepared by the solvothermal method using 4,4'-(naphthalene-1,4-diyl)dibenzoic acid (N...In this work, a new porous Zrobased metal-organic framework (MOF) with a large Brunner-Emmet-Teller (BET) surface area was prepared by the solvothermal method using 4,4'-(naphthalene-1,4-diyl)dibenzoic acid (NDDA) as the organic ligand, and the luminescent detection performance was studied systematically. The experiments comb- ing with computations indicate that the as-synthesized material can sensitively and selectively detect nitro explo- sives and metal ions, especially for 2,4,6-trinitrophenol (TNP) and Fe3+, due to the possible electron transfer from inorganic moieties to organic moieties with naphthalene part. Interestingly, owing to its high porosity and large sur- face area, this Zr-MOF showed quick luminescent response time (in 1 min) for TNP and Fe3+. The results obtained may provide useful information for the design of MOFs with the large permanent porosity in sensing applications for large molecules in the future.展开更多
基金supported by the National Natural Science Foundation of China (21301005)the Natural Science Foundation of Anhui Province (1408085QB31)the open fund of Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KFK201508)
文摘Metal-organic frameworks (MOFs) have been emerging as important multifunctional hybrid materials, not only due to the diversify framework architectures, but also contribute to the rich interactions among metals, ligands and guests. Nitro explosives have important influences tbr environmental protection and national homeland security, in this review, a brief description of luminescent MOFs is presented, accompanied by a short comment on the four types of metal-based luminescent MOFs as sensing materials for nitro explosives detection. Then the trends and challenges of luminescent MOFs as sensing materials ibr nitro explosives are also prospected.
基金The work was carried partly out under the auspices of the Ministry of Education, Youth & Sports of the Czech Republic as a part of its research project No. MSM 0021627501 and partly out under support from the Ministry of Industry & Trade of the Czech Republic as a part of
its Research project TANDEM No. FT-TA/049.
文摘In this article, a detection method for organic explosives by capillary electrophoresis (CE) is developed based on previous detection techniques. Firstly, a buffer solution consisting of 50 mmol·L-1 sodium dodecyl sulfate (SDS), 20 mmol·L-1 sodium tetraborate and 5% methanol was prepared and the UV detection in this buffer solution was conducted for three common organic explosives, including TNT, DNT and PETN. Then, the capillary UV detection method was investigated in terms of the transition time repeatability, the linear relationship between mass concentration and peak area and the limit of detection. The results revealed good reliability and stability of this method. In addition, these samples were characterized by photodiode array detector (PDA) to verify the qualitative results of UV detection.
基金Financial support by the National Key Basic Re- search Programof China ("973") (No. 2013CB733503), the National Natural Science Foundation of China (Nos. 21606007, 21136001 and 21536001) and the Funda- mental Research Funds for the Central Universities (No. ZY1509) is greatly appreciated.
文摘In this work, a new porous Zrobased metal-organic framework (MOF) with a large Brunner-Emmet-Teller (BET) surface area was prepared by the solvothermal method using 4,4'-(naphthalene-1,4-diyl)dibenzoic acid (NDDA) as the organic ligand, and the luminescent detection performance was studied systematically. The experiments comb- ing with computations indicate that the as-synthesized material can sensitively and selectively detect nitro explo- sives and metal ions, especially for 2,4,6-trinitrophenol (TNP) and Fe3+, due to the possible electron transfer from inorganic moieties to organic moieties with naphthalene part. Interestingly, owing to its high porosity and large sur- face area, this Zr-MOF showed quick luminescent response time (in 1 min) for TNP and Fe3+. The results obtained may provide useful information for the design of MOFs with the large permanent porosity in sensing applications for large molecules in the future.