By analytically solving the equation of azimuthal null geodesics for spherical photon trajectories, a parametric representation of the corresponding segment of the orbit is obtained. The solution parameter is the lati...By analytically solving the equation of azimuthal null geodesics for spherical photon trajectories, a parametric representation of the corresponding segment of the orbit is obtained. The solution parameter is the latitude coordinate. The dependences of the orbital radius on the black hole spinning parameter and the angle of inclination of its plane with respect to the rotation axis are calculated for flat circular non-equatorial orbits. It is proved that all spherical photon trajectories in the Kerr spacetime are unstable, as well as equatorial ones, and the critical photon orbits in the Schwarzschild metric.展开更多
文摘By analytically solving the equation of azimuthal null geodesics for spherical photon trajectories, a parametric representation of the corresponding segment of the orbit is obtained. The solution parameter is the latitude coordinate. The dependences of the orbital radius on the black hole spinning parameter and the angle of inclination of its plane with respect to the rotation axis are calculated for flat circular non-equatorial orbits. It is proved that all spherical photon trajectories in the Kerr spacetime are unstable, as well as equatorial ones, and the critical photon orbits in the Schwarzschild metric.