期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
KLT-VIO:Real-time Monocular Visual-Inertial Odometry
1
作者 Yuhao Jin Hang Li Shoulin Yin 《IJLAI Transactions on Science and Engineering》 2024年第1期8-16,共9页
This paper proposes a Visual-Inertial Odometry(VIO)algorithm that relies solely on monocular cameras and Inertial Measurement Units(IMU),capable of real-time self-position estimation for robots during movement.By inte... This paper proposes a Visual-Inertial Odometry(VIO)algorithm that relies solely on monocular cameras and Inertial Measurement Units(IMU),capable of real-time self-position estimation for robots during movement.By integrating the optical flow method,the algorithm tracks both point and line features in images simultaneously,significantly reducing computational complexity and the matching time for line feature descriptors.Additionally,this paper advances the triangulation method for line features,using depth information from line segment endpoints to determine their Plcker coordinates in three-dimensional space.Tests on the EuRoC datasets show that the proposed algorithm outperforms PL-VIO in terms of processing speed per frame,with an approximate 5%to 10%improvement in both relative pose error(RPE)and absolute trajectory error(ATE).These results demonstrate that the proposed VIO algorithm is an efficient solution suitable for low-computing platforms requiring real-time localization and navigation. 展开更多
关键词 Visual-inertial odometry opticalow Point features Line features Bundle adjustment
原文传递
基于车辆外观特征和帧间光流的目标跟踪算法
2
作者 李绍骞 程鑫 +1 位作者 周经美 赵祥模 《应用科学学报》 CAS CSCD 北大核心 2024年第1期103-118,共16页
在复杂道路场景下,车辆目标之间频繁遮挡、车辆目标之间相似的外观、目标整个运动过程中采用静态预设参数都会引起跟踪准确率下降等问题。该文提出了一种基于车辆外观特征和帧间光流的目标跟踪算法。首先,通过YOLOv5算法中的YOLOv5x网... 在复杂道路场景下,车辆目标之间频繁遮挡、车辆目标之间相似的外观、目标整个运动过程中采用静态预设参数都会引起跟踪准确率下降等问题。该文提出了一种基于车辆外观特征和帧间光流的目标跟踪算法。首先,通过YOLOv5算法中的YOLOv5x网络模型获得车辆目标框的位置信息;其次,利用RAFT (recurrent all-pairs field transforms for optical flow)算法计算当前帧和前一帧之间的光流,并根据得到的位置信息对光流图进行裁剪;最后,在卡尔曼滤波过程中利用帧间光流进行补偿得到更精确的运动状态信息,并利用车辆外观特征和交并比特征完成轨迹匹配。实验结果表明,基于车辆外观特征和帧间光流的目标跟踪算法在MOT16数据集上表现良好,相较于跟踪算法DeepSORT,成功跟踪帧数占比提高了1.6%,跟踪准确度提升了1.3%,跟踪精度提升了0.6%,改进的车辆外观特征提取模型准确率在训练集和验证集上分别提高了1.7%、6.3%。因此,基于高精度的车辆外观特征模型结合关联帧间光流的运动状态信息能够有效实现交通场景下的车辆目标跟踪。 展开更多
关键词 目标跟踪 车辆外观特征 帧间光流 卡尔曼滤波
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部