This study underscores the significance of online monitoring of standard substances for bituminous coal and anthracite,two commonly used fossil fuels.Terahertz technology emerges as a powerful non-destructive detectio...This study underscores the significance of online monitoring of standard substances for bituminous coal and anthracite,two commonly used fossil fuels.Terahertz technology emerges as a powerful non-destructive detection method capable of revealing the physical and chemical properties of measured objects.In this research,terahertz time-domain spectroscopy technology was employed to investigate the spectral characteristics of four distinct types of bituminous coal and anthracite samples.The refractive index and absorption coefficient spectra of these samples were calculated across a frequency range of 0.5 THz to 2.5 THz.Furthermore,principal component analysis was conducted using all refractive index and absorption coefficient data within this frequency band.Through the analysis and comparison with known parameters of coal standard materials,it was established that carbon content primarily influences the refractive index of bituminous coal and anthracite,while ash content predominantly affects the absorption effect.These findings underscore the potential of terahertz spectroscopy in conjunction with principal component analysis to qualitatively assess the similarities and differences between coal samples,thus offering novel insights for the online monitoring of diverse coal types and qualities.展开更多
In organic solar cells(OSCs),it is an effective way to improve the power conversion efficiency(PCE)by adding a guest component with appropriate absorption and energy levels in the host system.Herein,a new nonfullerene...In organic solar cells(OSCs),it is an effective way to improve the power conversion efficiency(PCE)by adding a guest component with appropriate absorption and energy levels in the host system.Herein,a new nonfullerene acceptor(NFA)named TBF-2Cl was developed by the strategy of expanding theπconjugated core of 2,2’-(((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-2,7-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(IDT-4Cl)with two benzene rings.With increase of benzene units,TBF-2Cl exhibits higher lowest unoccupied molecular orbital(LUMO)level of-3.75 eV than that of one benzene unit based NFA IDT-4Cl and fluorene core based NFA F-2Cl,which facilitates enhancing the open-circuit voltage(V_(oc))of ternary devices.Moreover,TBF-2Cl film shows a medium optical bandgap with the absorption range from 500-800 nm,being well complementary with the wide bandgap polymer donor D18 and narrow bandgap NFA CH-6F.Accordingly,a remarkable PCE of 18.92%with a high short-circuit current density(J_(sc))of 27.40 mA·cm^(-2),a fill factor(FF)of 0.749,especially an outstanding V_(oc) of 0.922 V was achieved for the optimal ternary device based on D18:TBF-2Cl:CH-6F,surpassing the binary counterpart(17.08%).The findings provide insight into the development of new guest acceptors for obtaining more efficient OSCs.展开更多
基金Anhui Province Natural Science Research Project for Universities(2022AH052272)。
文摘This study underscores the significance of online monitoring of standard substances for bituminous coal and anthracite,two commonly used fossil fuels.Terahertz technology emerges as a powerful non-destructive detection method capable of revealing the physical and chemical properties of measured objects.In this research,terahertz time-domain spectroscopy technology was employed to investigate the spectral characteristics of four distinct types of bituminous coal and anthracite samples.The refractive index and absorption coefficient spectra of these samples were calculated across a frequency range of 0.5 THz to 2.5 THz.Furthermore,principal component analysis was conducted using all refractive index and absorption coefficient data within this frequency band.Through the analysis and comparison with known parameters of coal standard materials,it was established that carbon content primarily influences the refractive index of bituminous coal and anthracite,while ash content predominantly affects the absorption effect.These findings underscore the potential of terahertz spectroscopy in conjunction with principal component analysis to qualitatively assess the similarities and differences between coal samples,thus offering novel insights for the online monitoring of diverse coal types and qualities.
基金supported by the National Natural Science Foundation of China(No.52173010)Jining University(Nos.2022HHKJ11,2019BSZX01).
文摘In organic solar cells(OSCs),it is an effective way to improve the power conversion efficiency(PCE)by adding a guest component with appropriate absorption and energy levels in the host system.Herein,a new nonfullerene acceptor(NFA)named TBF-2Cl was developed by the strategy of expanding theπconjugated core of 2,2’-(((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-2,7-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(IDT-4Cl)with two benzene rings.With increase of benzene units,TBF-2Cl exhibits higher lowest unoccupied molecular orbital(LUMO)level of-3.75 eV than that of one benzene unit based NFA IDT-4Cl and fluorene core based NFA F-2Cl,which facilitates enhancing the open-circuit voltage(V_(oc))of ternary devices.Moreover,TBF-2Cl film shows a medium optical bandgap with the absorption range from 500-800 nm,being well complementary with the wide bandgap polymer donor D18 and narrow bandgap NFA CH-6F.Accordingly,a remarkable PCE of 18.92%with a high short-circuit current density(J_(sc))of 27.40 mA·cm^(-2),a fill factor(FF)of 0.749,especially an outstanding V_(oc) of 0.922 V was achieved for the optimal ternary device based on D18:TBF-2Cl:CH-6F,surpassing the binary counterpart(17.08%).The findings provide insight into the development of new guest acceptors for obtaining more efficient OSCs.