The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized...The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained.K-index,P-index,O-index,and complexity index are introduced to contribute to performance analysis.Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order,these rational approximation impedance functions calculated by the iterating function meet computational rationality,positive reality,and operational validity.Then they are capable of having the operational performance of fractional operators and being physical realization.The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited.展开更多
Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We fur...Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces in terms of dyadic functions of H. This generalizes and strengthens the previous result when the heat kernel of H satisfies certain upper Gaussian bound.展开更多
Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to f...Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows: $$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $$ Here “Z j ” j=1 n is an orthonormal basis for the subbundle T (1,0) of the complex tangent bundle T ?(H n ) and T is the “missing direction”. The operator $ \mathcal{L}_\alpha $ is the sub-Laplacian on the Heisenberg group which is sub-elliptic if α does not belong to an exceptional set Λ α . We also construct projection operators and relative fundamental solution for the operator $ \mathcal{L}_\alpha $ while α ∈ Λ α .展开更多
Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) appli...Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.展开更多
When <em>D</em> is a linear partial differential operator of any order, a <em>direct problem</em> is to look for an operator <em>D</em><sub>1</sub> generating the <em...When <em>D</em> is a linear partial differential operator of any order, a <em>direct problem</em> is to look for an operator <em>D</em><sub>1</sub> generating the <em>compatibility conditions </em>(CC) <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub><em>1</em></sub><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">η</span></em></span></span> =</span><sub></sub> 0 of <em>D</em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">ξ </span></em></span></span>= <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">η</span></em></span></span>. Conversely, when <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> is given, an <em>inverse problem</em> is to look for an operator <span style="white-space:normal;"><em>D</em></span> such that its CC are generated by <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> and we shall say that <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> is <em>parametrized</em> by <em>D</em> = <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>0</sub></span>. We may thus construct a differential sequence with successive operators <em>D</em>, <em>D</em><sub>1</sub>, <em>D</em><sub>2</sub>, ..., each operator parametrizing the next one. Introducing the<em> formal adjoint ad</em>() of an operator, we have <img src="Edit_ecbb631c-2896-4dad-8234-cacd5504f138.png" alt="" />but <span style="white-space:nowrap;"><em>ad</em> (<em>D</em><sub><em>i</em>-1</sub>)</span> may not generate <em>all</em> the CC of <em>ad </em>(<em>D</em><sub>i</sub>). When <em>D </em>= <em>K</em> [d<sub>1</sub>, ..., d<sub>n</sub>] = <em>K </em>[<em>d</em>] is the (non-commutative) ring of differential operators wit展开更多
In present note,we apply the Leibniz formula with the nabla operator in discrete fractional calculus(DFC)due to obtain the discrete fractional solutions of a class of associated Bessel equations(ABEs)and a class of as...In present note,we apply the Leibniz formula with the nabla operator in discrete fractional calculus(DFC)due to obtain the discrete fractional solutions of a class of associated Bessel equations(ABEs)and a class of associated Legendre equations(ALEs),respectively.Thus,we exhibit a new solution method for such second order linear ordinary differential equations with singular points.展开更多
A general approach to transference principles for discrete and continuous sequence of operators (semi) groups is described. This allows one to recover the classical transference results of Calderon, Coifman and Weiss ...A general approach to transference principles for discrete and continuous sequence of operators (semi) groups is described. This allows one to recover the classical transference results of Calderon, Coifman and Weiss and of Berkson, Gilleppie and Muhly and the more recent one of the author. The method is applied to derive a new transference principle for (discrete and continuous) the sequence of operators semigroups that need not be grouped. As an application, functional calculus estimates for bounded sequence of operators with at most polynomially growing powers are derived, leading to a new proof of classical results by Peller from 1982. The method allows for a generalization of his results away from Hilbert spaces to -spaces and—involving the concept of γ-boundedness—to general spaces. Analogous results for strongly-continuous one-parameter (semi) groups are presented as well by Markus Haase [1]. Finally, an application is given to singular integrals for one-parameter semigroups.展开更多
There are different constructions of the flux of triad in loop quantum gravity, namely the fundamental and alternative flux operators. In parallel to the consistency check on the two versions of operator by the algebr...There are different constructions of the flux of triad in loop quantum gravity, namely the fundamental and alternative flux operators. In parallel to the consistency check on the two versions of operator by the algebraic calculus in the literature, we check their consistency by the graphical calculus. Our calculation based on the original Brink graphical method is obviously simpler than the algebraic calculation. It turns out that our consistency check fixes the regulating factor κreg of the Ashtekar-Lewandowski volume operator as 1/2, which corrects its previous value in the literature.展开更多
The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we ded...The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.展开更多
We obtain certain time decay and regularity estimates for 3D Schroedinger equation with a potential in the Kato class by using Besov spaces associated with Schroedinger operators.
Making use of the fractional differential operator, we impose and study a new class of analytic functions in the unit disk (type fractional differential equation). The main object of this paper is to investigate inc...Making use of the fractional differential operator, we impose and study a new class of analytic functions in the unit disk (type fractional differential equation). The main object of this paper is to investigate inclusion relations, coefficient bound for this class. Moreover, we discuss some geometric properties of the fractional differential operator.展开更多
We develop two parallel algorithms progressively based on C++ to compute a triangle operator problem, which plays an important role in the study of Schubert calculus. We also analyse the computational complexity of ...We develop two parallel algorithms progressively based on C++ to compute a triangle operator problem, which plays an important role in the study of Schubert calculus. We also analyse the computational complexity of each algorithm by using combinatorial quantities, such as the Catalan number, the Motzkin number, and the central binomial coefficients. The accuracy and efficiency of our algorithms have been justified by numerical experiments.展开更多
Let be a Schr?dinger operator on . We show that gradient estimates for the heat kernel of with upper Gaussian bounds imply polynomial decay for the kernels of certain smooth dyadic spectral operators. The latter decay...Let be a Schr?dinger operator on . We show that gradient estimates for the heat kernel of with upper Gaussian bounds imply polynomial decay for the kernels of certain smooth dyadic spectral operators. The latter decay property has been known to play an important role in the Littlewood-Paley theory for and Sobolev spaces. We are able to establish the result by modifying Hebisch and the author’s recent proofs. We give a counterexample in one dimension to show that there exists in the Schwartz class such that the long time gradient heat kernel estimate fails.展开更多
We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are opt...We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are optimally convergent with respect to the polynomial degree of the approximation.A numerical method is said to be asymptotically compatible if the sequence of approximate solutions of the nonlocal problem converges to the solution of the corresponding local problem as the horizon and the grid sizes simultaneously approach zero.We carry out a calibration process via Taylor series expansions and a scaling of the nonlocal operator via a strain energy density argument to ensure that the resulting collocation methods are asymptotically compatible.We fnd that,for polynomial degrees greater than or equal to two,there exists a calibration constant independent of the horizon size and the grid size such that the resulting collocation methods for the nonlocal difusion are asymptotically compatible.We verify these fndings through extensive numerical experiments.展开更多
In physics,the Klein-Gordon equation describes the motion of a quantum scalar or pseudoscalar field.Itis important to find actual values of its solutions in general timespace manifold.The paper deals with description ...In physics,the Klein-Gordon equation describes the motion of a quantum scalar or pseudoscalar field.Itis important to find actual values of its solutions in general timespace manifold.The paper deals with description ofdiscrete exterior calculus method for solving this equation numerically on space manifold and the time.The analysis ofstable condition and error for this method is also accomplished.展开更多
文摘The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained.K-index,P-index,O-index,and complexity index are introduced to contribute to performance analysis.Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order,these rational approximation impedance functions calculated by the iterating function meet computational rationality,positive reality,and operational validity.Then they are capable of having the operational performance of fractional operators and being physical realization.The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited.
文摘Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces in terms of dyadic functions of H. This generalizes and strengthens the previous result when the heat kernel of H satisfies certain upper Gaussian bound.
基金supported by a research grant from the United States Air Force Office of Scientific Research(AFOSR) SBIR Phase I (Grant No. FA9550-09-C-0045)a Hong Kong RGC competitive earmarked research(Grant No. 600607)+1 种基金a competitive research grant at Georgetown University (Grant No. GD2236000)supported by Natural Science Foundation of Taiwan,China (Grant No.97-2115-M-002-015)
文摘Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows: $$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $$ Here “Z j ” j=1 n is an orthonormal basis for the subbundle T (1,0) of the complex tangent bundle T ?(H n ) and T is the “missing direction”. The operator $ \mathcal{L}_\alpha $ is the sub-Laplacian on the Heisenberg group which is sub-elliptic if α does not belong to an exceptional set Λ α . We also construct projection operators and relative fundamental solution for the operator $ \mathcal{L}_\alpha $ while α ∈ Λ α .
文摘Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.
文摘When <em>D</em> is a linear partial differential operator of any order, a <em>direct problem</em> is to look for an operator <em>D</em><sub>1</sub> generating the <em>compatibility conditions </em>(CC) <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub><em>1</em></sub><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">η</span></em></span></span> =</span><sub></sub> 0 of <em>D</em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">ξ </span></em></span></span>= <span style="white-space:nowrap;"><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">η</span></em></span></span>. Conversely, when <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> is given, an <em>inverse problem</em> is to look for an operator <span style="white-space:normal;"><em>D</em></span> such that its CC are generated by <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> and we shall say that <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>1</sub></span> is <em>parametrized</em> by <em>D</em> = <span style="white-space:normal;"><em>D</em></span><span style="white-space:normal;"><sub>0</sub></span>. We may thus construct a differential sequence with successive operators <em>D</em>, <em>D</em><sub>1</sub>, <em>D</em><sub>2</sub>, ..., each operator parametrizing the next one. Introducing the<em> formal adjoint ad</em>() of an operator, we have <img src="Edit_ecbb631c-2896-4dad-8234-cacd5504f138.png" alt="" />but <span style="white-space:nowrap;"><em>ad</em> (<em>D</em><sub><em>i</em>-1</sub>)</span> may not generate <em>all</em> the CC of <em>ad </em>(<em>D</em><sub>i</sub>). When <em>D </em>= <em>K</em> [d<sub>1</sub>, ..., d<sub>n</sub>] = <em>K </em>[<em>d</em>] is the (non-commutative) ring of differential operators wit
文摘In present note,we apply the Leibniz formula with the nabla operator in discrete fractional calculus(DFC)due to obtain the discrete fractional solutions of a class of associated Bessel equations(ABEs)and a class of associated Legendre equations(ALEs),respectively.Thus,we exhibit a new solution method for such second order linear ordinary differential equations with singular points.
文摘A general approach to transference principles for discrete and continuous sequence of operators (semi) groups is described. This allows one to recover the classical transference results of Calderon, Coifman and Weiss and of Berkson, Gilleppie and Muhly and the more recent one of the author. The method is applied to derive a new transference principle for (discrete and continuous) the sequence of operators semigroups that need not be grouped. As an application, functional calculus estimates for bounded sequence of operators with at most polynomially growing powers are derived, leading to a new proof of classical results by Peller from 1982. The method allows for a generalization of his results away from Hilbert spaces to -spaces and—involving the concept of γ-boundedness—to general spaces. Analogous results for strongly-continuous one-parameter (semi) groups are presented as well by Markus Haase [1]. Finally, an application is given to singular integrals for one-parameter semigroups.
基金Supported by National Natural Science Foundation of China(11765006,11875006,11961131013)
文摘There are different constructions of the flux of triad in loop quantum gravity, namely the fundamental and alternative flux operators. In parallel to the consistency check on the two versions of operator by the algebraic calculus in the literature, we check their consistency by the graphical calculus. Our calculation based on the original Brink graphical method is obviously simpler than the algebraic calculation. It turns out that our consistency check fixes the regulating factor κreg of the Ashtekar-Lewandowski volume operator as 1/2, which corrects its previous value in the literature.
文摘The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.
文摘We obtain certain time decay and regularity estimates for 3D Schroedinger equation with a potential in the Kato class by using Besov spaces associated with Schroedinger operators.
文摘Making use of the fractional differential operator, we impose and study a new class of analytic functions in the unit disk (type fractional differential equation). The main object of this paper is to investigate inclusion relations, coefficient bound for this class. Moreover, we discuss some geometric properties of the fractional differential operator.
基金The authors sincerely appreciate the referees for acknowledging the manuscript and providing valuable comments and suggestions that benefit their manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11131008, 11271157, 11201453, 11471141), the 973 Program (2011CB302400), the Open Project Program of the State Key Lab of CAD&CG (A1302) of Zhejiang University, and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China. They also wish to thank the High Performance Computing Center of Jilin University and Computing Center of Jilin Province for essential computing support.
文摘We develop two parallel algorithms progressively based on C++ to compute a triangle operator problem, which plays an important role in the study of Schubert calculus. We also analyse the computational complexity of each algorithm by using combinatorial quantities, such as the Catalan number, the Motzkin number, and the central binomial coefficients. The accuracy and efficiency of our algorithms have been justified by numerical experiments.
文摘Let be a Schr?dinger operator on . We show that gradient estimates for the heat kernel of with upper Gaussian bounds imply polynomial decay for the kernels of certain smooth dyadic spectral operators. The latter decay property has been known to play an important role in the Littlewood-Paley theory for and Sobolev spaces. We are able to establish the result by modifying Hebisch and the author’s recent proofs. We give a counterexample in one dimension to show that there exists in the Schwartz class such that the long time gradient heat kernel estimate fails.
文摘We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are optimally convergent with respect to the polynomial degree of the approximation.A numerical method is said to be asymptotically compatible if the sequence of approximate solutions of the nonlocal problem converges to the solution of the corresponding local problem as the horizon and the grid sizes simultaneously approach zero.We carry out a calibration process via Taylor series expansions and a scaling of the nonlocal operator via a strain energy density argument to ensure that the resulting collocation methods are asymptotically compatible.We fnd that,for polynomial degrees greater than or equal to two,there exists a calibration constant independent of the horizon size and the grid size such that the resulting collocation methods for the nonlocal difusion are asymptotically compatible.We verify these fndings through extensive numerical experiments.
基金Supported by China Postdoctoral Science Foundation under Grant No.20090460102 Zhejiang Province Postdoctoral Science Foundation,National Key Basic Research Program of China under Grant No.2004CB318000 National Natural Science Foundation of China under Grant No.10871170
文摘In physics,the Klein-Gordon equation describes the motion of a quantum scalar or pseudoscalar field.Itis important to find actual values of its solutions in general timespace manifold.The paper deals with description ofdiscrete exterior calculus method for solving this equation numerically on space manifold and the time.The analysis ofstable condition and error for this method is also accomplished.