鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通...鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通过对电池放电曲线及恢复曲线分析,结合电池等效模型,拟合出开路电压的计算公式.用放电停止后的某时刻电压估计电池的开路电压.不但解决了SOC估算中开路电压法用时长的问题,而且提高了开路电压值的准确性,进而提高了SOC估算精度.再以戴维宁模型为基础,通过电池测试平台辨识电池模型参数,并验证其可靠性,采用扩展卡尔曼滤波算法实现了对电池荷电状态的估算,状态参数SOC估算初始值由改进后的开路电压法估算出的SOC值确定.结果表明该方法解决了初始值的偏差导致的估算初期误差较大问题,提高了整体的估算精度.展开更多
Power conversion efficiency(PCE)of single-junction polymer solar cells(PSCs)has made a remarkable breakthrough recently.Plenty of work was reported to achieve PCEs higher than 16%derived from the PM6:Y6 binary system....Power conversion efficiency(PCE)of single-junction polymer solar cells(PSCs)has made a remarkable breakthrough recently.Plenty of work was reported to achieve PCEs higher than 16%derived from the PM6:Y6 binary system.To further increase the PCEs of binary OSCs incorporating small molecular acceptor(SMA)Y6,we substituted PM6 with PM7 due to the deeper highest occupied molecular orbital(HOMO)of PM7.Consequently,the PM7:Y6 has achieved PCEs as high as 17.0%by the hotcast method,due to the improved open-circuit voltage(VOC).Compared with PM6,the lower HOMO of PM7 increases the gap between ELUMO-donor and EHOMO-acceptor,which is proportional to VOC.This research provides a high PCE for single-junction binary PSCs,which is meaningful for device fabrication related to PM7 and commercialization of PSCs.展开更多
Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using b...Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using battery open-circuit voltage(OCV).However,acquiring the complete OCV data online can be a challenging endeavor due to the time-consuming measurement process or the need for specific operating conditions required by OCV estimation models.In addressing these concerns,this study introduces a deep neural network-combined framework for accurate and robust OCV estimation,utilizing partial daily charging data.We incorporate a generative deep learning model to extract aging-related features from data and generate high-fidelity OCV curves.Correlation analysis is employed to identify the optimal partial charging data,optimizing the OCV estimation precision while preserving exceptional flexibility.The validation results,using data from nickel-cobalt-magnesium(NCM) batteries,illustrate the accurate estimation of the complete OCV-capacity curve,with an average root mean square errors(RMSE) of less than 3 mAh.Achieving this level of precision for OCV estimation requires only around 50 s collection of partial charging data.Further validations on diverse battery types operating under various conditions confirm the effectiveness of our proposed method.Additional cases of precise health diagnosis based on OCV highlight the significance of conducting online OCV estimation.Our method provides a flexible approach to achieve complete OCV estimation and holds promise for generalization to other tasks in BMSs.展开更多
文摘鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通过对电池放电曲线及恢复曲线分析,结合电池等效模型,拟合出开路电压的计算公式.用放电停止后的某时刻电压估计电池的开路电压.不但解决了SOC估算中开路电压法用时长的问题,而且提高了开路电压值的准确性,进而提高了SOC估算精度.再以戴维宁模型为基础,通过电池测试平台辨识电池模型参数,并验证其可靠性,采用扩展卡尔曼滤波算法实现了对电池荷电状态的估算,状态参数SOC估算初始值由改进后的开路电压法估算出的SOC值确定.结果表明该方法解决了初始值的偏差导致的估算初期误差较大问题,提高了整体的估算精度.
基金supported by Shen Zhen Technology and Innovation Commission(JCYJ20170413173814007,JCYJ20170818113905024)Hong Kong Research Grants Council(Research Impact Fund R6021-18,16305915,16322416,606012,16303917)+2 种基金Hong Kong Innovation and Technology Commission(ITCCNERC14SC01,ITS/471/18)supported by National Natural Science Foundation of China(51573120,51973146,91633301)Collaborative Innovation Center of Suzhou Nano Science&Technology,and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Power conversion efficiency(PCE)of single-junction polymer solar cells(PSCs)has made a remarkable breakthrough recently.Plenty of work was reported to achieve PCEs higher than 16%derived from the PM6:Y6 binary system.To further increase the PCEs of binary OSCs incorporating small molecular acceptor(SMA)Y6,we substituted PM6 with PM7 due to the deeper highest occupied molecular orbital(HOMO)of PM7.Consequently,the PM7:Y6 has achieved PCEs as high as 17.0%by the hotcast method,due to the improved open-circuit voltage(VOC).Compared with PM6,the lower HOMO of PM7 increases the gap between ELUMO-donor and EHOMO-acceptor,which is proportional to VOC.This research provides a high PCE for single-junction binary PSCs,which is meaningful for device fabrication related to PM7 and commercialization of PSCs.
基金This work was supported by the National Key R&D Program of China(2021YFB2402002)the Beijing Natural Science Foundation(L223013)the Chongqing Automobile Collaborative Innovation Centre(No.2022CDJDX-004).
文摘Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using battery open-circuit voltage(OCV).However,acquiring the complete OCV data online can be a challenging endeavor due to the time-consuming measurement process or the need for specific operating conditions required by OCV estimation models.In addressing these concerns,this study introduces a deep neural network-combined framework for accurate and robust OCV estimation,utilizing partial daily charging data.We incorporate a generative deep learning model to extract aging-related features from data and generate high-fidelity OCV curves.Correlation analysis is employed to identify the optimal partial charging data,optimizing the OCV estimation precision while preserving exceptional flexibility.The validation results,using data from nickel-cobalt-magnesium(NCM) batteries,illustrate the accurate estimation of the complete OCV-capacity curve,with an average root mean square errors(RMSE) of less than 3 mAh.Achieving this level of precision for OCV estimation requires only around 50 s collection of partial charging data.Further validations on diverse battery types operating under various conditions confirm the effectiveness of our proposed method.Additional cases of precise health diagnosis based on OCV highlight the significance of conducting online OCV estimation.Our method provides a flexible approach to achieve complete OCV estimation and holds promise for generalization to other tasks in BMSs.