Greenhouse gas monitoring on a broader scale is necessary to ensure that a cap-and-trade system is effective, reduces measurement uncertainty, and detects fraudulent or illegal activities. The recent strict air qualit...Greenhouse gas monitoring on a broader scale is necessary to ensure that a cap-and-trade system is effective, reduces measurement uncertainty, and detects fraudulent or illegal activities. The recent strict air quality regulation in livestock production facilities has accelerated the need for accurate on-farm determination of greenhouse gas (GHG) emission rates (ERs) from livestock operations in the United States under a wide range of production, management, and climate conditions. The estimation of GHG emissions from different ground-level sources or at a property line is a very complicated process, and such measurements require multidirectional expertise including engineering, micrometeorology, agronomy, applied physics, and chemistry. Accurate measurement of gaseous concentration from an emitting source is a prerequisite and of paramount importance for estimating emissions rates (ERs) using any micro-meteorological and sampling device-based method. This paper provides an overview of the state-of-the-art sensors and analyzers used to measure GHG concentrations. Sensor and analyzer selection and their performance in the laboratory and field were discussed. In addition, protocols for data quality control (QC) and quality assurance (QA) when deploying sensors in the area for long-term use were also discussed. In addition, the preparation of measurement systems, coupling of air samplers with sensing systems for measuring gaseous concentrations, and uncertainties inherent to such measurement methods as a whole to estimate ERs were discussed in this paper.展开更多
文摘Greenhouse gas monitoring on a broader scale is necessary to ensure that a cap-and-trade system is effective, reduces measurement uncertainty, and detects fraudulent or illegal activities. The recent strict air quality regulation in livestock production facilities has accelerated the need for accurate on-farm determination of greenhouse gas (GHG) emission rates (ERs) from livestock operations in the United States under a wide range of production, management, and climate conditions. The estimation of GHG emissions from different ground-level sources or at a property line is a very complicated process, and such measurements require multidirectional expertise including engineering, micrometeorology, agronomy, applied physics, and chemistry. Accurate measurement of gaseous concentration from an emitting source is a prerequisite and of paramount importance for estimating emissions rates (ERs) using any micro-meteorological and sampling device-based method. This paper provides an overview of the state-of-the-art sensors and analyzers used to measure GHG concentrations. Sensor and analyzer selection and their performance in the laboratory and field were discussed. In addition, protocols for data quality control (QC) and quality assurance (QA) when deploying sensors in the area for long-term use were also discussed. In addition, the preparation of measurement systems, coupling of air samplers with sensing systems for measuring gaseous concentrations, and uncertainties inherent to such measurement methods as a whole to estimate ERs were discussed in this paper.