Microwave absorbing materials(MAMs)has been intensively investigated in order to meet the requirement of electromagnetic radiation control,especially in S and C band.In this work,FeCo-based magnetic MAMs are hydrother...Microwave absorbing materials(MAMs)has been intensively investigated in order to meet the requirement of electromagnetic radiation control,especially in S and C band.In this work,FeCo-based magnetic MAMs are hydrothermally synthesized via a magnetic-field-induced process.The composition and morphology of the MAMs are capable of being adjusted simultaneously by the atomic ratio of Fe2+to Co2+in the precursor.The hierarchical magnetic microchain,which has a core–shell structure of twodimensional FexCo1−xOOH nanosheets anchored vertically on the surface of a one-dimensional(1D)Co microchain,shows significantly enhanced microwave absorption in C band,resulting in a reflection loss(RL)of lower than−20 dB at frequencies ranging from 4.4 to 8.0 GHz under a suitable matching thickness.The magnetic coupling of Co microcrystals and the double-loss mechanisms out of the core-shell structure are considered to promote the microwave attenuation capability.The hierarchical design of 1D magnetic MAMs provides a feasible strategy to solve the electromagnetic pollution in C band.展开更多
Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with ...Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.展开更多
Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carri...Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carried out on rockfill materials with nominal particle diameters of 2.5 mm,5 mm and 10 mm to investigate the particle size effect on the single-particle strength and the relationship between the characteristic stress and probability of non-failure.Test data were found to be described by the Weibull distribution with the Weibull modulus of 3.24.Assemblies with uniform nominal grains were then subjected to one-dimensional compression tests at eight levels of vertical stress with a maximum of 100 MPa.The yield stress in one-dimensional compression tests increased with decreasing the particle size,which could be estimated from the single-particle crushing tests.The void ratio-vertical stress curve could be predicted by an exponential function.The particle size distribution curve increased obviously with applied stresses less than 16 MPa and gradually reached the ultimate fractal grading.The relative breakage index became constant with stress up to 64 MPa and was obtained from the ultimate grading at the fractal dimension(a?2:7).A hyperbolical function was also found useful for describing the relationship between the relative breakage index and input work during one-dimensional compression tests.展开更多
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring...In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.展开更多
Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional ar...Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional architectures such as one dimensional (1D)-two dimensional (2D) hybrid nanomaterials can integrate the merits of individual components and provide enhanced functionality. However, it is still very challenging to fabricate 1D/2D architectures because of the different growth mechanisms of the nanostructures. Here, we present a new solvent- mediated, surface reaction-driven growth route for synthesis of CdS nanowire (NW)/CdIn2S4 nanosheet (NS) 1D/2D architectures. The as-obtained CdS NW/ CdIn2S4 NS structures exhibit much higher visible-light-responsive photocatalytic activities for water splitting than the individual components. The CdS NW/CdIn2S4 NS heterostructure was further fabricated into photoelectrodes, which achieved a considerable photocurrent density of 2.85 mA·cm^-2 at 0 V vs. the reversible hydrogen electrode (RHE) without use of any co-catalysts. This represents one of the best results from a CdS-based photoelectrochemical (PEC) cell. Both the multidimensional nature and type II band alignment of the 1D/2D CdS/CdIn2S4 heterostructure contribute to the enhanced photocatalyfic and photoelectrochemical activity. The present work not only provides a new strategy for designing multidimensional 1D/2D heterostructures, but also documents the development of highly efficient energy conversion catalysts.展开更多
The existence, multiplicity and infinite solvability of positive solutions are established for some two-point boundary value problems of one-dimensional p-Laplacian. In this paper, by multiplicity we mean the existenc...The existence, multiplicity and infinite solvability of positive solutions are established for some two-point boundary value problems of one-dimensional p-Laplacian. In this paper, by multiplicity we mean the existence of m solutions, where m is an arbitrary natural number.展开更多
Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,w...Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.展开更多
Electrospinning has attracted tremendous attention in the design and preparation of 1D nanostructured electrode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(NIBs), due to the versatility and facil...Electrospinning has attracted tremendous attention in the design and preparation of 1D nanostructured electrode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(NIBs), due to the versatility and facility. In this review, we present a comprehensive summary of the development of electrospun electrode nanomaterials for LIBs and NIBs, and a brief introduction about electrode materials beyond LIBs and NIBs. By summarizing various electrochemical active materials, this review focuses on the evolution in structures and the constitution of electrospun electrode materials. In detail, a variety of electrospun anode and cathode materials of LIBs and NIBs have been properly discussed, respectively. Finally, the current progress in the electrospun electrode materials is well reviewed and the development direction is also pointed out. We believe that in the nearly future, electrospun electrode materials would be applied in commercial LIBs and promote the advance in NIBs. And we hope that this review could be helpful in the design and fabrication of electrospun hierarchical materials for other advanced energy-storage devices.展开更多
This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was ca...This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of ID oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area.展开更多
One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacito...One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacitors. This review describes some recent developments on the rechargeable electrodes by using 1-D nanomaterials(such as Li Mn2O4 nanowires, carbon nanofibers, Ni Mo O4 · n H2O nanorods, V2O5 nanoribbons,carbon nanotubes, etc.). New preparation methods and superior electrochemical properties of the 1-D nanomaterials including carbon nanotube(CNT), some oxides, transition metal compounds and polymers, and their composites are emphatically introduced. The VGCF/Li Fe PO4/C triaxial nanowire cathodes for Li-ion battery present a positive cycling performance without any degradation in almost theoretical capacity(160 m Ah/g).The Si nanowire anodes for Li-ion battery show the highest known theoretical charge capacity(4277 m Ah/g),that is about 11 times lager than that of the commercial graphite(372 m Ah/g). The SWCNT/Ni foam electrodes for supercapacitor display small equivalent series resistance(ESR, 52 m?) and impressive high power density(20 k W/kg). The advantages and challenges associated with the application of these materials for energy conversion and storage devices are highlighted.展开更多
A Discrete Element Method (DEM) model is developed to study the particle break- age effect on the one-dimensional compression behavior of silica sands. The 'maximum tensile stress' breakage criterion considering m...A Discrete Element Method (DEM) model is developed to study the particle break- age effect on the one-dimensional compression behavior of silica sands. The 'maximum tensile stress' breakage criterion considering multiple contacts is adopted to simulate the crushing of circular particles in the DEM. The model is compared with published experimental results. Com- parison between the compression curves obtained from the numerical and experimental results shows that the proposed method is very effective in studying the compression behavior of silica sands considering particle breakage. The evolution of compression curves at different stress levels is extensively studied using contact force distribution, variation of contact number and particle size distribution curve with loading. It is found that particle breakage has great impact on com- pression behavior of sand, particularly after the yield stress is reached and particle breakage starts. The crushing probability of particles is found to be macroscopically affected by stress level and particle size distribution curve, and microscopically related to the evolutions of contact force and coordination number. Once the soil becomes well-graded and the average coordination number is greater than 4 in two-dimension, the crushing probability of parent particles can reduce by up to 5/6. It is found that the average contact force does not always increase with loading, but increases to a peak value then decreases once the soil becomes more well-graded. It is found through the loading rate sensitivity analysis that the compression behavior of sand samples in the DEM is also affected by the loading rate. Higher yield stresses are obtained at higher loading rates.展开更多
基金The authors are grateful for the supports from the National Natural Science Foundation of China(No.U21A2093)This work was also financially supported by the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘Microwave absorbing materials(MAMs)has been intensively investigated in order to meet the requirement of electromagnetic radiation control,especially in S and C band.In this work,FeCo-based magnetic MAMs are hydrothermally synthesized via a magnetic-field-induced process.The composition and morphology of the MAMs are capable of being adjusted simultaneously by the atomic ratio of Fe2+to Co2+in the precursor.The hierarchical magnetic microchain,which has a core–shell structure of twodimensional FexCo1−xOOH nanosheets anchored vertically on the surface of a one-dimensional(1D)Co microchain,shows significantly enhanced microwave absorption in C band,resulting in a reflection loss(RL)of lower than−20 dB at frequencies ranging from 4.4 to 8.0 GHz under a suitable matching thickness.The magnetic coupling of Co microcrystals and the double-loss mechanisms out of the core-shell structure are considered to promote the microwave attenuation capability.The hierarchical design of 1D magnetic MAMs provides a feasible strategy to solve the electromagnetic pollution in C band.
基金Hunan Provincial Natural Science Foundation of China (No. 06JJ50103)the National Natural Science Foundationof China (No. 60375001)
文摘Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.
基金financial support from the 111 Project (Grant No. B13024)the National Science Foundation of China (Grant Nos. 51509024, 51678094 and 51578096)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ208848)the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681)the State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of Mining and Technology (Grant No. SKLGDUEK1810)
文摘Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carried out on rockfill materials with nominal particle diameters of 2.5 mm,5 mm and 10 mm to investigate the particle size effect on the single-particle strength and the relationship between the characteristic stress and probability of non-failure.Test data were found to be described by the Weibull distribution with the Weibull modulus of 3.24.Assemblies with uniform nominal grains were then subjected to one-dimensional compression tests at eight levels of vertical stress with a maximum of 100 MPa.The yield stress in one-dimensional compression tests increased with decreasing the particle size,which could be estimated from the single-particle crushing tests.The void ratio-vertical stress curve could be predicted by an exponential function.The particle size distribution curve increased obviously with applied stresses less than 16 MPa and gradually reached the ultimate fractal grading.The relative breakage index became constant with stress up to 64 MPa and was obtained from the ultimate grading at the fractal dimension(a?2:7).A hyperbolical function was also found useful for describing the relationship between the relative breakage index and input work during one-dimensional compression tests.
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
基金supported by National Natural Science Foundation of China(Grant No.50775210)Liaoning Provincial Natural Science Foundation of China(Grant No.20062143)Liaoning Provincial Universities Science and Technology Program of China(Grant No.05L023)
文摘In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 51372173, 21673160, and 51420105002), Natural Science Foundation of Zhejiang for Distinguished Young Scholars (No. LR16B010002), Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL201409SIC), and startup funds of Syracuse University.
文摘Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional architectures such as one dimensional (1D)-two dimensional (2D) hybrid nanomaterials can integrate the merits of individual components and provide enhanced functionality. However, it is still very challenging to fabricate 1D/2D architectures because of the different growth mechanisms of the nanostructures. Here, we present a new solvent- mediated, surface reaction-driven growth route for synthesis of CdS nanowire (NW)/CdIn2S4 nanosheet (NS) 1D/2D architectures. The as-obtained CdS NW/ CdIn2S4 NS structures exhibit much higher visible-light-responsive photocatalytic activities for water splitting than the individual components. The CdS NW/CdIn2S4 NS heterostructure was further fabricated into photoelectrodes, which achieved a considerable photocurrent density of 2.85 mA·cm^-2 at 0 V vs. the reversible hydrogen electrode (RHE) without use of any co-catalysts. This represents one of the best results from a CdS-based photoelectrochemical (PEC) cell. Both the multidimensional nature and type II band alignment of the 1D/2D CdS/CdIn2S4 heterostructure contribute to the enhanced photocatalyfic and photoelectrochemical activity. The present work not only provides a new strategy for designing multidimensional 1D/2D heterostructures, but also documents the development of highly efficient energy conversion catalysts.
文摘The existence, multiplicity and infinite solvability of positive solutions are established for some two-point boundary value problems of one-dimensional p-Laplacian. In this paper, by multiplicity we mean the existence of m solutions, where m is an arbitrary natural number.
基金Project(2012JQ7013)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(QN2012025)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011BSJJ084)supported by Research Foundation of Northwest A&F University,China
文摘Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.
基金supported by the National Natural Science Foundation of China(21373195)the“Recruitment Program of Global Experts”+2 种基金the program for New Century Excellent Talents in University(NCET-12-0515)the Fundamental Research Funds for theCentral Universities(WK3430000004)the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Electrospinning has attracted tremendous attention in the design and preparation of 1D nanostructured electrode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(NIBs), due to the versatility and facility. In this review, we present a comprehensive summary of the development of electrospun electrode nanomaterials for LIBs and NIBs, and a brief introduction about electrode materials beyond LIBs and NIBs. By summarizing various electrochemical active materials, this review focuses on the evolution in structures and the constitution of electrospun electrode materials. In detail, a variety of electrospun anode and cathode materials of LIBs and NIBs have been properly discussed, respectively. Finally, the current progress in the electrospun electrode materials is well reviewed and the development direction is also pointed out. We believe that in the nearly future, electrospun electrode materials would be applied in commercial LIBs and promote the advance in NIBs. And we hope that this review could be helpful in the design and fabrication of electrospun hierarchical materials for other advanced energy-storage devices.
基金The authors acknowledge the support from the National Major Project of Fundamental Research:Nanomaterials and Nanostructures(Grant No.2005CB623603)the National Natural Science Foundation of China(Grant No.10304018,10574131)the Special Fund for President Scholarship,Chinese Academy of Sciences.We also thank Dr.Liang LI,Prof.Changhui YE,Dr.Yufeng HA0,Dr.Xinsheng PENG,Dr.Shuhui SUN,Dr.Changhao LIANG,Mr.Peng YAN,Prof.Guowen MENG,and Prof.Guanghui LI for their helps in the preparation of this manuscript.
文摘This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of ID oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area.
基金supported by the National Natural Science Foundation of China(No.5073000809ZR1414800)+3 种基金Science and Technology Commission of Shanghai MunicipalityChina(No.1052nm02000 and 09JC1407400)Shanghai Research Fund for the Post-doctoral Program(No.10R21414700)China Postdoctoral Science Foundation funded project(No.20100470710)
文摘One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacitors. This review describes some recent developments on the rechargeable electrodes by using 1-D nanomaterials(such as Li Mn2O4 nanowires, carbon nanofibers, Ni Mo O4 · n H2O nanorods, V2O5 nanoribbons,carbon nanotubes, etc.). New preparation methods and superior electrochemical properties of the 1-D nanomaterials including carbon nanotube(CNT), some oxides, transition metal compounds and polymers, and their composites are emphatically introduced. The VGCF/Li Fe PO4/C triaxial nanowire cathodes for Li-ion battery present a positive cycling performance without any degradation in almost theoretical capacity(160 m Ah/g).The Si nanowire anodes for Li-ion battery show the highest known theoretical charge capacity(4277 m Ah/g),that is about 11 times lager than that of the commercial graphite(372 m Ah/g). The SWCNT/Ni foam electrodes for supercapacitor display small equivalent series resistance(ESR, 52 m?) and impressive high power density(20 k W/kg). The advantages and challenges associated with the application of these materials for energy conversion and storage devices are highlighted.
基金Project supported by the National Natural Science Foundation of China(Nos.50909057,51208294 and 41372319)the Innovation Program of Shanghai Municipal Education Commission(No.15ZZ081)the Innovation Project of Shanghai Postgraduate Education(No.20131129)
文摘A Discrete Element Method (DEM) model is developed to study the particle break- age effect on the one-dimensional compression behavior of silica sands. The 'maximum tensile stress' breakage criterion considering multiple contacts is adopted to simulate the crushing of circular particles in the DEM. The model is compared with published experimental results. Com- parison between the compression curves obtained from the numerical and experimental results shows that the proposed method is very effective in studying the compression behavior of silica sands considering particle breakage. The evolution of compression curves at different stress levels is extensively studied using contact force distribution, variation of contact number and particle size distribution curve with loading. It is found that particle breakage has great impact on com- pression behavior of sand, particularly after the yield stress is reached and particle breakage starts. The crushing probability of particles is found to be macroscopically affected by stress level and particle size distribution curve, and microscopically related to the evolutions of contact force and coordination number. Once the soil becomes well-graded and the average coordination number is greater than 4 in two-dimension, the crushing probability of parent particles can reduce by up to 5/6. It is found that the average contact force does not always increase with loading, but increases to a peak value then decreases once the soil becomes more well-graded. It is found through the loading rate sensitivity analysis that the compression behavior of sand samples in the DEM is also affected by the loading rate. Higher yield stresses are obtained at higher loading rates.