The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extr...The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extreme-cold climate change event(Mi-1) still remain controversial. Our samples from the core of the Ocean Drilling Program(ODP) Leg 154, Site 926, located in the equatorial Atlantic, mainly consist of light-gray, nannofossil chalk with foraminifers interbedded with greenish-gray, clayey, nannofossil chalk sediments. Color variation from light-gray layers(up to 80% carbonate content) to dark layers(60% carbonate content) was observed to occur cyclically at the meter scale. Therefore, we chose color reflectance lightness(L*) data as the paleoclimate proxy on which to perform cyclostratigraphic analysis because it could reflect carbonate content changes. Based on the recognition of the 405 kyr long eccentricity and 40 kyr obliquity cycles of the L* series, we tuned the series to establish an absolute astronomical time scale using the published age of the Oligocene-Miocene boundary(OMB) as the anchor for an absolute age control point. The power spectra of the tuned L* series showed that the long eccentricity signals became significantly weak, while the obliquity signals became strong, from the Late Oligocene to the Early Miocene. The 405 kyr long eccentricity minimum coincided with the 1.2 Myr obliquity node at the OMB, and similar convergences might be closely related to other extreme-cold events in Earth’s history. In addition, the sedimentation accumulation rate, oxygen isotopes of benthonic foraminifers, and rodents’ per-taxon turnover rate from Central Spain showed the same 2 Myr cyclicity, which indicates the significant influence of Earth-orbital forcing on the Earth system and ecological evolution on the million-year time scale.展开更多
The geochemical signatures of fifty-four rock samples and three supplementary drill stem test(DST)oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin(CQB)were analysed.Reconstruction of the early ...The geochemical signatures of fifty-four rock samples and three supplementary drill stem test(DST)oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin(CQB)were analysed.Reconstruction of the early Oligocene-early Miocene(36–16 Ma)palaeovegetation and source analyses of organic matter(OM)were conducted using aliphatic biomarkers in ancient sediments and DST oils.Both the interpreted aquatic and terrigenous OM contributed to the CQB source rocks(SRs)but had varying relative proportions.The four distribution patterns derived from n-alkanes,terpanes,and steranes are representative of four OM composition models of the Yacheng-Sanya SRs,including model A,model B,model C,and model D,which were classified based on the increasing contribution from terrigenous OM relative to aquatic OM.Some terrigenous higher plantderived biomarkers,including oleanane,des-A-oleanane,C_(29)ααα20R sterane,bicadinanes,the C_(19)/(C_(19)+C_(23))tricyclic terpane ratio,and other n-alkane-derived ratios suggest that angiosperms had increased proportions in the palaeoflora from early Oligocene to early Miocene,and the bloom of terrigenous higher plants was observed during deposition of upper Lingshui Formation to lower Sanya Formation.These findings are consistent with the incremental total organic carbon and free hydrocarbons+potential hydrocarbons(S_1+S_2)in the lower Lingshuilower Sanya strata with a significant enrichment of OM in the E_3l_1-N_1s_2 shales.The maturity-and environmentsensitive aliphatic parameters of the CQB SRs and DST oils suggest that all the samples have predominantly reached their early oil-generation windows but have not exceeded the peak oil windows,except for some immature Sanya Formation shales.In addition,most of the OM in the analysed samples was characterised by mixed OM contributions under anoxic to sub-anoxic conditions.Furthermore,terrestrial-dominant SRs were interpreted to have developed mainly in the Lingshui-Sanya formations and were deposited in sub-oxic to oxic environments,compare展开更多
The Liupan Mountains,one of the important mountain ranges in western China,are located on the boundary between the northeastern Tibetan Plateau and the Ordos Block.The uplift history of the Liupan Mountains remains co...The Liupan Mountains,one of the important mountain ranges in western China,are located on the boundary between the northeastern Tibetan Plateau and the Ordos Block.The uplift history of the Liupan Mountains remains controversial.Loess deposits are good tracers of regional tectonic and geomorphic changes,because loess is sensitive to erosion and the formation and preservation of loess requires relatively flat highlands and relatively stable tectonic environments.We investigated the distribution of Neogene loess deposits on the western piedmont of the Liupan Mountains and examined a near-continuous loess section(Nanping section)on the piedmont alluvial highlands.Correlation of magnetic susceptibility stratigraphy with the QA-ⅠMiocene loess sequence dates this 56-m section covering the interval from~8.1 to 6.2 Ma.The lower boundary age of this section,together with previously reported Zhuanglang red clay(sand-gravel layers with intercalated loess during~9–8 Ma and near-continuous loess during~8–4.8 Ma)and Chaona red clay(~8.1–2.58 Ma),indicates that the Liupan Mountains were uplifted in the late Miocene(~9–8 Ma)and basically formed by~8 Ma,attesting to no intense mountain building since that time.In addition,based on the information from the Zhuanglang core and the QA-Ⅰsection,we infer that sizable parts of the Liupan Mountains were uplifted during the late Oligocene–early Miocene and did not experience intense uplift during~22–9 Ma.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41322013)the Program of Introducing Talents of Discipline to Universities (Grant No. B14031)the National Basic Research Program of China (Grant No. 2012CB822003)
文摘The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extreme-cold climate change event(Mi-1) still remain controversial. Our samples from the core of the Ocean Drilling Program(ODP) Leg 154, Site 926, located in the equatorial Atlantic, mainly consist of light-gray, nannofossil chalk with foraminifers interbedded with greenish-gray, clayey, nannofossil chalk sediments. Color variation from light-gray layers(up to 80% carbonate content) to dark layers(60% carbonate content) was observed to occur cyclically at the meter scale. Therefore, we chose color reflectance lightness(L*) data as the paleoclimate proxy on which to perform cyclostratigraphic analysis because it could reflect carbonate content changes. Based on the recognition of the 405 kyr long eccentricity and 40 kyr obliquity cycles of the L* series, we tuned the series to establish an absolute astronomical time scale using the published age of the Oligocene-Miocene boundary(OMB) as the anchor for an absolute age control point. The power spectra of the tuned L* series showed that the long eccentricity signals became significantly weak, while the obliquity signals became strong, from the Late Oligocene to the Early Miocene. The 405 kyr long eccentricity minimum coincided with the 1.2 Myr obliquity node at the OMB, and similar convergences might be closely related to other extreme-cold events in Earth’s history. In addition, the sedimentation accumulation rate, oxygen isotopes of benthonic foraminifers, and rodents’ per-taxon turnover rate from Central Spain showed the same 2 Myr cyclicity, which indicates the significant influence of Earth-orbital forcing on the Earth system and ecological evolution on the million-year time scale.
基金The National Natural Science Foundation of China under contract No.41872131。
文摘The geochemical signatures of fifty-four rock samples and three supplementary drill stem test(DST)oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin(CQB)were analysed.Reconstruction of the early Oligocene-early Miocene(36–16 Ma)palaeovegetation and source analyses of organic matter(OM)were conducted using aliphatic biomarkers in ancient sediments and DST oils.Both the interpreted aquatic and terrigenous OM contributed to the CQB source rocks(SRs)but had varying relative proportions.The four distribution patterns derived from n-alkanes,terpanes,and steranes are representative of four OM composition models of the Yacheng-Sanya SRs,including model A,model B,model C,and model D,which were classified based on the increasing contribution from terrigenous OM relative to aquatic OM.Some terrigenous higher plantderived biomarkers,including oleanane,des-A-oleanane,C_(29)ααα20R sterane,bicadinanes,the C_(19)/(C_(19)+C_(23))tricyclic terpane ratio,and other n-alkane-derived ratios suggest that angiosperms had increased proportions in the palaeoflora from early Oligocene to early Miocene,and the bloom of terrigenous higher plants was observed during deposition of upper Lingshui Formation to lower Sanya Formation.These findings are consistent with the incremental total organic carbon and free hydrocarbons+potential hydrocarbons(S_1+S_2)in the lower Lingshuilower Sanya strata with a significant enrichment of OM in the E_3l_1-N_1s_2 shales.The maturity-and environmentsensitive aliphatic parameters of the CQB SRs and DST oils suggest that all the samples have predominantly reached their early oil-generation windows but have not exceeded the peak oil windows,except for some immature Sanya Formation shales.In addition,most of the OM in the analysed samples was characterised by mixed OM contributions under anoxic to sub-anoxic conditions.Furthermore,terrestrial-dominant SRs were interpreted to have developed mainly in the Lingshui-Sanya formations and were deposited in sub-oxic to oxic environments,compare
基金supported by the National Natural Science Foundation of China(Grant No.42488201)the Strategy Priority Research Program(Category B)of Chinese Academy of Sciences(Grant No.XDB0710000)。
文摘The Liupan Mountains,one of the important mountain ranges in western China,are located on the boundary between the northeastern Tibetan Plateau and the Ordos Block.The uplift history of the Liupan Mountains remains controversial.Loess deposits are good tracers of regional tectonic and geomorphic changes,because loess is sensitive to erosion and the formation and preservation of loess requires relatively flat highlands and relatively stable tectonic environments.We investigated the distribution of Neogene loess deposits on the western piedmont of the Liupan Mountains and examined a near-continuous loess section(Nanping section)on the piedmont alluvial highlands.Correlation of magnetic susceptibility stratigraphy with the QA-ⅠMiocene loess sequence dates this 56-m section covering the interval from~8.1 to 6.2 Ma.The lower boundary age of this section,together with previously reported Zhuanglang red clay(sand-gravel layers with intercalated loess during~9–8 Ma and near-continuous loess during~8–4.8 Ma)and Chaona red clay(~8.1–2.58 Ma),indicates that the Liupan Mountains were uplifted in the late Miocene(~9–8 Ma)and basically formed by~8 Ma,attesting to no intense mountain building since that time.In addition,based on the information from the Zhuanglang core and the QA-Ⅰsection,we infer that sizable parts of the Liupan Mountains were uplifted during the late Oligocene–early Miocene and did not experience intense uplift during~22–9 Ma.