On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan platea...On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending rightlateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported.展开更多
Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dime...Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits.The method is realized in three steps:(1) measuring surface displacements along the LOS directions of both ascending and descending orbits based on interferometric phases;(2) measuring surface displacements along the azimuth directions of both the ascending and descending orbits based on the SAR amplitude data;and(3) estimating the three-dimensional(3D) surface displacement field by combining the above four independent one-dimensional displacements using the method of least squares and Helmert variance component estimation.We apply the method to infer the 3D surface displacement field caused by the 2003 Bam,Iran,earthquake.The results reveal that in the northern part of Bam the ground surface experienced both subsidence and southwestward horizontal movement,while in the southern part uplift and southeastward horizontal movement occurred.The displacement field thus determined matches the location of the fault very well with the maximal displacements reaching 22,40,and 30 cm,respectively in the up,northing and easting directions.Finally,we compare the 3D displacement field with that simulated from the Okada model.The results demonstrate that the method presented here can be used to generate reliable and highly accurate 3D surface displacement fields.展开更多
通过正演模型研究,对煤层顶、底界面振幅随偏移距变化(Amplitude versus offset,AVO)特征及其影响因素进行了分析.结果表明,煤层顶界面的反射振幅先是随着炮检距(入射角)的增大而减小,然后再逐渐增大;煤层底界面的反射波振幅最初也是...通过正演模型研究,对煤层顶、底界面振幅随偏移距变化(Amplitude versus offset,AVO)特征及其影响因素进行了分析.结果表明,煤层顶界面的反射振幅先是随着炮检距(入射角)的增大而减小,然后再逐渐增大;煤层底界面的反射波振幅最初也是随着炮检距(入射角)的增大而减小,但容易发生全反射,不利于AVO分析.不同结构煤体在AVO响应上存在明显的差异,随着媒体结构破坏程度的增强,煤层顶界面反射波AVO的截距和梯度都会增大。煤体结构相同时,与泥岩顶板相比,以砂岩为顶板的煤层顶面表现为较大的反射振幅绝对值和变化梯度.煤层厚度的调谐作用对其AVO属性也有明显的影响.展开更多
基金supported by the National Basic Research Program of China(Grant No.2004CB418401)National Science Foundation of China(grant No.40841007)
文摘On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending rightlateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported.
基金supported by National Natural Science Foundation of China (Grant Nos.40774003 and 40974006)National High Technology Research and Development Program of China (Grant No.2006AA12Z156)+3 种基金Program for New Century Excellent Talents in Universities (Grant No.NCET-08-0570)the Project of Western China 1:50000 Topography Mappingthe Project of Doctoral Dissertation Innovation (Grant No.2008yb046)the Sustentation Fund of the Excellent Doctoral Dissertation (Grant No.1960-71131100022) of Central South University
文摘Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits.The method is realized in three steps:(1) measuring surface displacements along the LOS directions of both ascending and descending orbits based on interferometric phases;(2) measuring surface displacements along the azimuth directions of both the ascending and descending orbits based on the SAR amplitude data;and(3) estimating the three-dimensional(3D) surface displacement field by combining the above four independent one-dimensional displacements using the method of least squares and Helmert variance component estimation.We apply the method to infer the 3D surface displacement field caused by the 2003 Bam,Iran,earthquake.The results reveal that in the northern part of Bam the ground surface experienced both subsidence and southwestward horizontal movement,while in the southern part uplift and southeastward horizontal movement occurred.The displacement field thus determined matches the location of the fault very well with the maximal displacements reaching 22,40,and 30 cm,respectively in the up,northing and easting directions.Finally,we compare the 3D displacement field with that simulated from the Okada model.The results demonstrate that the method presented here can be used to generate reliable and highly accurate 3D surface displacement fields.
文摘通过正演模型研究,对煤层顶、底界面振幅随偏移距变化(Amplitude versus offset,AVO)特征及其影响因素进行了分析.结果表明,煤层顶界面的反射振幅先是随着炮检距(入射角)的增大而减小,然后再逐渐增大;煤层底界面的反射波振幅最初也是随着炮检距(入射角)的增大而减小,但容易发生全反射,不利于AVO分析.不同结构煤体在AVO响应上存在明显的差异,随着媒体结构破坏程度的增强,煤层顶界面反射波AVO的截距和梯度都会增大。煤体结构相同时,与泥岩顶板相比,以砂岩为顶板的煤层顶面表现为较大的反射振幅绝对值和变化梯度.煤层厚度的调谐作用对其AVO属性也有明显的影响.