The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are...The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are hindered by centralized management and lack traceability,while blockchain systems are limited by low capacity and high latency.To address these challenges,the present study investigates the reliable storage and trustworthy sharing of IoT data,and presents a novel system architecture that integrates on-chain and off-chain data manage systems.This architecture,integrating blockchain and distributed storage technologies,provides high-capacity,high-performance,traceable,and verifiable data storage and access.The on-chain system,built on Hyperledger Fabric,manages metadata,verification data,and permission information of the raw data.The off-chain system,implemented using IPFS Cluster,ensures the reliable storage and efficient access to massive files.A collaborative storage server is designed to integrate on-chain and off-chain operation interfaces,facilitating comprehensive data operations.We provide a unified access interface for user-friendly system interaction.Extensive testing validates the system’s reliability and stable performance.The proposed approach significantly enhances storage capacity compared to standalone blockchain systems.Rigorous reliability tests consistently yield positive outcomes.With average upload and download throughputs of roughly 20 and 30 MB/s,respectively,the system’s throughput surpasses the blockchain system by a factor of 4 to 18.展开更多
After the Ethereum DAO attack in 2016,which resulted in significant economic losses,blockchain governance has become a prominent research area.However,there is a lack of comprehensive and systematic literature review ...After the Ethereum DAO attack in 2016,which resulted in significant economic losses,blockchain governance has become a prominent research area.However,there is a lack of comprehensive and systematic literature review on blockchain governance.To deeply understand the process of blockchain governance and provide guidance for the future design of the blockchain governance model,we provide an in-depth review of blockchain governance.In this paper,first we introduce the consensus algorithms currently used in blockchain and relate them to governance theory.Second,we present the main content of off-chain governance and investigate two well-known off-chain governance projects.Third,we investigate four common on-chain governance voting techniques,then summarize the seven attributes that the on-chain governance voting process should meet,and finally analyze four well-known on-chain governance blockchain projects based on the previous research.We hope this survey will provide an in-depth insight into the potential development direction of blockchain governance and device future research agenda.展开更多
Research on blockchains addresses multiple issues,with one being the automated creation of smart contracts.Developing smart contract methods is more difficult than mainstream software development as the underlying blo...Research on blockchains addresses multiple issues,with one being the automated creation of smart contracts.Developing smart contract methods is more difficult than mainstream software development as the underlying blockchain infrastructure poses additional complexity.We report on a new approach to developing smart contracts with the objective of automating the process to increase developer efficiency and reduce the risk of errors introduced by software developers.To support industry adoption,we use Business Process Model and Notation(BPMN)modeling to describe an application while targeting applications in the trade vertical.We describe a system that transforms a BPMN model into a multi-modal model that combines Discrete Event(DE)modeling for concurrency with Hierarchical State Machines(HSMs)to represent application functionality.Then,further transformations are used to transform the DE-HSM model into methods in smart contracts.The system lets the modeler decide which of the independent patterns should be transformed into methods of a separate smart contract that is deployed on a sidechain for the purpose of(i)reducing processing costs and/or(ii)providing privacy so that other participants in the smart contract do not have visibility into the processing of the pattern.We also briefly describe a proof-of-concept tool we built to demonstrate the feasibility of our approach.展开更多
With the growing maturity of blockchain technology,its peer-topeer model and fully duplicated data storage pattern enable blockchain to act as a distributed ledger in untrustworthy environments.Blockchain storage has ...With the growing maturity of blockchain technology,its peer-topeer model and fully duplicated data storage pattern enable blockchain to act as a distributed ledger in untrustworthy environments.Blockchain storage has also become a research hotspot in industry,finance,and academia due to its security,and its unique data storage management model is gradually becoming a key technology to play its value in various fields’applications.However,with the increasing amount of data written into the blockchain,the blockchain system faces many problems in its actual implementation of the application,such as high storage space occupation,low data flexibility and availability,low retrieval efficiency,poor scalability,etc.To improve the above problems,this paper combines off-chain storage technology and deduplication technology to optimize the blockchain storage model.Firstly,this paper adopts the double-chain model to reduce the data storage of the major chain system,which stores a small amount of primary data and supervises the vice chain through an Application Programming Interface(API).The vice chain stores a large number of copies of data as well as non-transactional data.Our model divides the vice chain storage system into two layers,including a storage layer and a processing layer.In the processing layer,deduplication technology is applied to reduce the redundancy of vice chain data.Our doublechain storage model with high scalability enhances data flexibility,is more suitable as a distributed storage system,and performs well in data retrieval.展开更多
基金This work is supported by the National Key Research and Development Program(No.2022YFB2702101)Shaanxi Key Industrial Province Projects(2021ZDLGY03-02,2021ZDLGY03-08)the National Natural Science Foundation of China under Grants 62272394 and 92152301.
文摘The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are hindered by centralized management and lack traceability,while blockchain systems are limited by low capacity and high latency.To address these challenges,the present study investigates the reliable storage and trustworthy sharing of IoT data,and presents a novel system architecture that integrates on-chain and off-chain data manage systems.This architecture,integrating blockchain and distributed storage technologies,provides high-capacity,high-performance,traceable,and verifiable data storage and access.The on-chain system,built on Hyperledger Fabric,manages metadata,verification data,and permission information of the raw data.The off-chain system,implemented using IPFS Cluster,ensures the reliable storage and efficient access to massive files.A collaborative storage server is designed to integrate on-chain and off-chain operation interfaces,facilitating comprehensive data operations.We provide a unified access interface for user-friendly system interaction.Extensive testing validates the system’s reliability and stable performance.The proposed approach significantly enhances storage capacity compared to standalone blockchain systems.Rigorous reliability tests consistently yield positive outcomes.With average upload and download throughputs of roughly 20 and 30 MB/s,respectively,the system’s throughput surpasses the blockchain system by a factor of 4 to 18.
基金supported by the Shandong Provincial Key Research and Development Program (No.2021CXGC010107)the National Natural Science Foundation of China (Grant Nos.62172307,U21A20466,62272350)+2 种基金the New 20 Project of Higher Education of Jinan (No.202228017)the Special Project on Science and Technology Program of Hubei Provience (Nos.2020AEA013,2021BAA025)the Fundamental Research Funds for the Central Universities (No.2042023KF0203).
文摘After the Ethereum DAO attack in 2016,which resulted in significant economic losses,blockchain governance has become a prominent research area.However,there is a lack of comprehensive and systematic literature review on blockchain governance.To deeply understand the process of blockchain governance and provide guidance for the future design of the blockchain governance model,we provide an in-depth review of blockchain governance.In this paper,first we introduce the consensus algorithms currently used in blockchain and relate them to governance theory.Second,we present the main content of off-chain governance and investigate two well-known off-chain governance projects.Third,we investigate four common on-chain governance voting techniques,then summarize the seven attributes that the on-chain governance voting process should meet,and finally analyze four well-known on-chain governance blockchain projects based on the previous research.We hope this survey will provide an in-depth insight into the potential development direction of blockchain governance and device future research agenda.
文摘Research on blockchains addresses multiple issues,with one being the automated creation of smart contracts.Developing smart contract methods is more difficult than mainstream software development as the underlying blockchain infrastructure poses additional complexity.We report on a new approach to developing smart contracts with the objective of automating the process to increase developer efficiency and reduce the risk of errors introduced by software developers.To support industry adoption,we use Business Process Model and Notation(BPMN)modeling to describe an application while targeting applications in the trade vertical.We describe a system that transforms a BPMN model into a multi-modal model that combines Discrete Event(DE)modeling for concurrency with Hierarchical State Machines(HSMs)to represent application functionality.Then,further transformations are used to transform the DE-HSM model into methods in smart contracts.The system lets the modeler decide which of the independent patterns should be transformed into methods of a separate smart contract that is deployed on a sidechain for the purpose of(i)reducing processing costs and/or(ii)providing privacy so that other participants in the smart contract do not have visibility into the processing of the pattern.We also briefly describe a proof-of-concept tool we built to demonstrate the feasibility of our approach.
基金This work is supported by the Key Research and Development Project of Sichuan Province(No.2021YFSY0012,No.2020YFG0307,No.2021YFG0332)the Key Research and Development Project of Chengdu(No.2019-YF05-02028-GX)+1 种基金the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643).
文摘With the growing maturity of blockchain technology,its peer-topeer model and fully duplicated data storage pattern enable blockchain to act as a distributed ledger in untrustworthy environments.Blockchain storage has also become a research hotspot in industry,finance,and academia due to its security,and its unique data storage management model is gradually becoming a key technology to play its value in various fields’applications.However,with the increasing amount of data written into the blockchain,the blockchain system faces many problems in its actual implementation of the application,such as high storage space occupation,low data flexibility and availability,low retrieval efficiency,poor scalability,etc.To improve the above problems,this paper combines off-chain storage technology and deduplication technology to optimize the blockchain storage model.Firstly,this paper adopts the double-chain model to reduce the data storage of the major chain system,which stores a small amount of primary data and supervises the vice chain through an Application Programming Interface(API).The vice chain stores a large number of copies of data as well as non-transactional data.Our model divides the vice chain storage system into two layers,including a storage layer and a processing layer.In the processing layer,deduplication technology is applied to reduce the redundancy of vice chain data.Our doublechain storage model with high scalability enhances data flexibility,is more suitable as a distributed storage system,and performs well in data retrieval.