期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
决策树优化选择下城市交通出行特征研究
1
作者 李文 《现代电子技术》 北大核心 2024年第5期182-186,共5页
文中对基于决策树优化选择下城市交通出行特征进行研究,通过研究城市交通出行方式,缓解城市交通出行压力。基于决策树算法基本理论,构建决策树模型,选取城市交通出行特征作为分类依据,运用C4.5决策树算法对城市交通出行数据进行分类,根... 文中对基于决策树优化选择下城市交通出行特征进行研究,通过研究城市交通出行方式,缓解城市交通出行压力。基于决策树算法基本理论,构建决策树模型,选取城市交通出行特征作为分类依据,运用C4.5决策树算法对城市交通出行数据进行分类,根据分类后各个不同特征叶子节点对上层子节点的总占比进行城市交通出行特征优化选择分析,并在“Occam's razor”的基础上,利用重新引入法提出优化方法,解决C4.5决策树算法存在的过度拟合问题,提升城市交通出行方式分析效果。实验结果表明,该方法可有效分析城市交通现有出行特征,指导城市交通规划,依据该方法的分析结果对早高峰线路进行优化后,有效减少了长距离拥堵路段,同时避免了严重阻塞路段的产生。 展开更多
关键词 城市交通 出行特征 决策树 优化选择 特征分类 C4.5决策树算法 奥卡姆剃刀理论 过度拟合
下载PDF
智能算法在双辊铸轧过程铸轧力计算中的应用
2
作者 刘晓东 曹光明 《材料与冶金学报》 CAS 2009年第2期140-144,共5页
在双辊铸轧过程中,铸轧力的控制是铸轧过程稳定进行和提高薄带质量的关键.为了控制铸轧力,必须建立铸轧力计算数学模型,本文采用了一种基于贝叶斯方法的前向神经网络训练算法以提高网络的泛化能力,在网络的目标函数中引入了表示网络结... 在双辊铸轧过程中,铸轧力的控制是铸轧过程稳定进行和提高薄带质量的关键.为了控制铸轧力,必须建立铸轧力计算数学模型,本文采用了一种基于贝叶斯方法的前向神经网络训练算法以提高网络的泛化能力,在网络的目标函数中引入了表示网络结构复杂性的惩罚项,融入"奥克姆剪刀"理论,避免了网络训练的过拟合.将上述网络应用于铸轧过程的铸轧力计算,具有很高的计算精度,同时在收敛速度、稳定性和泛化能力方面都优于传统的BP神经网络. 展开更多
关键词 贝叶斯方法 神经网络 双辊铸轧 “奥克姆剪刀”理论
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部