Oxygenated volatile organic compounds(OVOCs) are key intermediates in the atmospheric photooxidation process. To further study the primary and secondary sources of OVOCs,their ambient levels were monitored using a pro...Oxygenated volatile organic compounds(OVOCs) are key intermediates in the atmospheric photooxidation process. To further study the primary and secondary sources of OVOCs,their ambient levels were monitored using a proton-transfer reaction mass spectrometer(PTR-MS) at an urban site in the Pearl River Delta of China. Continuous monitoring campaigns were conducted in the spring, summer, fall, and winter of 2016. Among the six types of OVOC species, the mean concentrations of methanol were the highest in each season(up to 13–20 ppbv), followed by those of acetone, acetaldehyde and acetic acid(approximately 2–4 ppbv), while those of formic acid and methyl ethyl ketone(MEK) were the lowest(approximately 1–2 ppbv). As observed from a diurnal variation chart, the OVOCs observed in Shenzhen may have been affected by numerous factors such as their primary and secondary sources and photochemical consumption. The photochemical age-based parameterization method was used to apportion the sources of ambient OVOCs. Methanol had significant anthropogenic primary sources but negligible anthropogenic secondary sources during all of the seasons. Acetone, MEK and acetic acid were mostly attributed to anthropogenic primary sources during each season with smaller contributions from anthropogenic secondary sources. Acetaldehyde had similar contributions from both anthropogenic secondary and anthropogenic primary sources throughout the year.Meanwhile, anthropogenic primary sources contributed the most to formic acid.展开更多
Oxygenated volatile organic compounds(OVOCs) are important precursors and products of atmospheric secondary pollution. The sources of OVOCs, however, are still quite uncertain,especially in the atmosphere with much po...Oxygenated volatile organic compounds(OVOCs) are important precursors and products of atmospheric secondary pollution. The sources of OVOCs, however, are still quite uncertain,especially in the atmosphere with much pollution in China. To study the sources of OVOCs in rural atmospheres, a proton transfer reaction mass spectrometry(PTR-MS) was deployed at a northern rural site(WD) and a southern rural site(YMK) in China during the summer of 2014 and 2016, respectively. The continuous observation showed that the mean concentration of TVOCs(totally 17 VOCs) measured at WD(52.4 ppbv) was far higher than that at YMK(11.1 ppbv), and the OVOCs were the most abundant at both the two sites. The diurnal variations showed that local sources of OVOCs were still prominent at WD, while regional transport influenced YMK much. The photochemical age-based parameterization method was then used to quantitatively apportion the sources of ambient OVOCs. The anthropogenic primary sources at WD and YMK contributed less(2%–16%) to each OVOC species. At both the sites, the atmospheric background had a dominant contribution(~ 50%) to acetone and formic acid, while the anthropogenic secondary formation was the main source(~ 40%) of methanol and MEK. For acetaldehyde and acetic acid, the biogenic sources were their largest source(~ 40%) at WD, while the background(39%) and anthropogenic secondary formation(42%) were their largest sources at YMK, respectively. This study reveals the complexity of sources of OVOCs in China, which urgently needs explored further.展开更多
Oxygenated volatile organic compounds(OVOCs) emitted from orange wastes during aerobic decomposition were investigated in a laboratory-controlled incubator for a period of two months. Emission of total OVOCs(TOVOCs...Oxygenated volatile organic compounds(OVOCs) emitted from orange wastes during aerobic decomposition were investigated in a laboratory-controlled incubator for a period of two months. Emission of total OVOCs(TOVOCs) from orange wastes reached 1714 mg/dry kg(330 mg/wet kg). Ethanol, methanol, ethyl acetate, methyl acetate, 2-butanone and acetaldehyde were the most abundant OVOC species with shares of 26.9%, 24.8%, 20.3%, 13.9%, 2.8%and 2.5%, respectively, in the TOVOCs released. The emission fluxes of the above top five OVOCs were quite trivial in the beginning but increased sharply to form one "peak emission window" with maximums at days 1-8 until leveling off after 10 days. This type of "peak emission window" was synchronized with the CO2 fluxes and incubation temperature of the orange wastes, indicating that released OVOCs were mainly derived from secondary metabolites of orange substrates through biotic processes rather than abiotic processes or primary volatilization of the inherent pool in oranges. Acetaldehyde instead had emission fluxes decreasing sharply from its initial maximum to nearly zero in about four days,suggesting that it was inherent rather than secondarily formed. For TOVOCs or all OVOC species except 2-butanone and acetone, over 80% of their emissions occurred during the first week, implying that organic wastes might give off a considerable amount of OVOCs during the early disposal period under aerobic conditions.展开更多
Unsaturated alcohols are important components in complex mixtures of oxygenated volatile organic compounds,and play a significant role in atmospheric chemistry.The uptake kinetics of 3-buten-1-ol (BO31),4-penten-1-ol ...Unsaturated alcohols are important components in complex mixtures of oxygenated volatile organic compounds,and play a significant role in atmospheric chemistry.The uptake kinetics of 3-buten-1-ol (BO31),4-penten-1-ol (PO41) and 3-methyl3-buten-1-ol (MBO331) into 20 wt%-80 wt% H2SO4 solutions were studied,using a rotated wetted-wall reactor coupled to a differentially pumped single-photon ionization time of flight mass spectrometer (SPI-TOFMS).With increasing acidity,the uptake processes changed from reversible to irreversible (reactive).Reactive uptake was observed in 60 wt%-80 wt%,50 wt%-80 wt% and 30 wt%-80 wt% H2SO4 solutions for BO31,PO41 and MBO331,respectively.Reactive uptake coefficients were acquired and are reported here for the first time.Reactivity order followed the trend:BO31<PO41<MBO331.An electrophilic addition mechanism of H2SO4 to the C==C double bond was used to explain this trend.Atmospheric implications were discussed,based on the reactive uptake coefficients.This heterogeneous reaction with sulfuric acid aerosols may be a potential degradation pathway of unsaturated alcohols,and should not be neglected.展开更多
Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment mon...Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).展开更多
Biogenic volatile organic compounds(BVOCs)are widely involved in a variety of atmospheric chemical processes due to their high reactivity and species diversity.To date,however,research on BVOCs in agroecosystems,parti...Biogenic volatile organic compounds(BVOCs)are widely involved in a variety of atmospheric chemical processes due to their high reactivity and species diversity.To date,however,research on BVOCs in agroecosystems,particularly fruit trees,remains scarce despite their large cultivation area and economic interest.BVOC emissions from different organs(leaf or fruit)of apple and peach trees were investigated throughout the stages of fruit development(FS,fruit swelling;FC,fruit coloration;FM,fruit maturity;and FP,fruit postharvest)using a proton-transfer-reaction mass spectrometer.Results indicated that methanol was the most abundant compound emitted by the leaf(apple tree leaf 492.5±47.9 ng/(g·hr),peach tree leaf 938.8±154.5 ng/(g·hr)),followed by acetic acid and green leaf volatiles.Beside the above three compounds,acetaldehyde had an important contribution to the emissions from the fruit.Overall,the total BVOCs(sum of eight compounds studied in this paper)emitted by both leaf and fruit gradually decreased along the fruit development,although the effect was significant only for the leaf.The leaf(2020.8±258.8 ng/(g·hr))was a stronger BVOC emitter than the fruit(146.0±45.7 ng/(g·hr))(P=0.006),and there were no significant differences in total BVOC emission rates between apple and peach trees.These findings contribute to our understanding on BVOC emissions from different plant organs and provide important insights into the variation of BVOC emissions across different fruit developmental stages.展开更多
基金supported by the Ministry of Science and Technology of China (Nos.2017YFC0210004,2014BAC21B01)the Science and Technology Plan of Shenzhen Municipality (Nos.JCYJ20170412150626172,JCYJ20160122105855253)
文摘Oxygenated volatile organic compounds(OVOCs) are key intermediates in the atmospheric photooxidation process. To further study the primary and secondary sources of OVOCs,their ambient levels were monitored using a proton-transfer reaction mass spectrometer(PTR-MS) at an urban site in the Pearl River Delta of China. Continuous monitoring campaigns were conducted in the spring, summer, fall, and winter of 2016. Among the six types of OVOC species, the mean concentrations of methanol were the highest in each season(up to 13–20 ppbv), followed by those of acetone, acetaldehyde and acetic acid(approximately 2–4 ppbv), while those of formic acid and methyl ethyl ketone(MEK) were the lowest(approximately 1–2 ppbv). As observed from a diurnal variation chart, the OVOCs observed in Shenzhen may have been affected by numerous factors such as their primary and secondary sources and photochemical consumption. The photochemical age-based parameterization method was used to apportion the sources of ambient OVOCs. Methanol had significant anthropogenic primary sources but negligible anthropogenic secondary sources during all of the seasons. Acetone, MEK and acetic acid were mostly attributed to anthropogenic primary sources during each season with smaller contributions from anthropogenic secondary sources. Acetaldehyde had similar contributions from both anthropogenic secondary and anthropogenic primary sources throughout the year.Meanwhile, anthropogenic primary sources contributed the most to formic acid.
基金supported by the Ministry of Science and Technology of China,China(No.2017YFC0210004)the National Natural Science Foundation of China,China(No.91544215)the Science and Technology Plan of Shenzhen Municipality(No.JCYJ20170412150626172)
文摘Oxygenated volatile organic compounds(OVOCs) are important precursors and products of atmospheric secondary pollution. The sources of OVOCs, however, are still quite uncertain,especially in the atmosphere with much pollution in China. To study the sources of OVOCs in rural atmospheres, a proton transfer reaction mass spectrometry(PTR-MS) was deployed at a northern rural site(WD) and a southern rural site(YMK) in China during the summer of 2014 and 2016, respectively. The continuous observation showed that the mean concentration of TVOCs(totally 17 VOCs) measured at WD(52.4 ppbv) was far higher than that at YMK(11.1 ppbv), and the OVOCs were the most abundant at both the two sites. The diurnal variations showed that local sources of OVOCs were still prominent at WD, while regional transport influenced YMK much. The photochemical age-based parameterization method was then used to quantitatively apportion the sources of ambient OVOCs. The anthropogenic primary sources at WD and YMK contributed less(2%–16%) to each OVOC species. At both the sites, the atmospheric background had a dominant contribution(~ 50%) to acetone and formic acid, while the anthropogenic secondary formation was the main source(~ 40%) of methanol and MEK. For acetaldehyde and acetic acid, the biogenic sources were their largest source(~ 40%) at WD, while the background(39%) and anthropogenic secondary formation(42%) were their largest sources at YMK, respectively. This study reveals the complexity of sources of OVOCs in China, which urgently needs explored further.
基金supported by the Ministry of Science and Technology of China (No. 2012IM030700)the National Natural Science Foundation of China (Nos. 41025012, U0833003, 41273095 and 41103067)
文摘Oxygenated volatile organic compounds(OVOCs) emitted from orange wastes during aerobic decomposition were investigated in a laboratory-controlled incubator for a period of two months. Emission of total OVOCs(TOVOCs) from orange wastes reached 1714 mg/dry kg(330 mg/wet kg). Ethanol, methanol, ethyl acetate, methyl acetate, 2-butanone and acetaldehyde were the most abundant OVOC species with shares of 26.9%, 24.8%, 20.3%, 13.9%, 2.8%and 2.5%, respectively, in the TOVOCs released. The emission fluxes of the above top five OVOCs were quite trivial in the beginning but increased sharply to form one "peak emission window" with maximums at days 1-8 until leveling off after 10 days. This type of "peak emission window" was synchronized with the CO2 fluxes and incubation temperature of the orange wastes, indicating that released OVOCs were mainly derived from secondary metabolites of orange substrates through biotic processes rather than abiotic processes or primary volatilization of the inherent pool in oranges. Acetaldehyde instead had emission fluxes decreasing sharply from its initial maximum to nearly zero in about four days,suggesting that it was inherent rather than secondarily formed. For TOVOCs or all OVOC species except 2-butanone and acetone, over 80% of their emissions occurred during the first week, implying that organic wastes might give off a considerable amount of OVOCs during the early disposal period under aerobic conditions.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-YW-N24,KZCX2-YW-205)the National Natural Science Foundation of China (40925016,40830101)
文摘Unsaturated alcohols are important components in complex mixtures of oxygenated volatile organic compounds,and play a significant role in atmospheric chemistry.The uptake kinetics of 3-buten-1-ol (BO31),4-penten-1-ol (PO41) and 3-methyl3-buten-1-ol (MBO331) into 20 wt%-80 wt% H2SO4 solutions were studied,using a rotated wetted-wall reactor coupled to a differentially pumped single-photon ionization time of flight mass spectrometer (SPI-TOFMS).With increasing acidity,the uptake processes changed from reversible to irreversible (reactive).Reactive uptake was observed in 60 wt%-80 wt%,50 wt%-80 wt% and 30 wt%-80 wt% H2SO4 solutions for BO31,PO41 and MBO331,respectively.Reactive uptake coefficients were acquired and are reported here for the first time.Reactivity order followed the trend:BO31<PO41<MBO331.An electrophilic addition mechanism of H2SO4 to the C==C double bond was used to explain this trend.Atmospheric implications were discussed,based on the reactive uptake coefficients.This heterogeneous reaction with sulfuric acid aerosols may be a potential degradation pathway of unsaturated alcohols,and should not be neglected.
基金This research was supported by the Natural Science Foundation of China(Grant No.41907188)Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-386)the China Postdoctoral Science Foundation(Grant No.2019M653658).
文摘Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).
基金supported by the Open Fund by Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control(No.KHK1801)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)+1 种基金CAS President’s International Fellowship Initiative(No.PIFI-2016VBA057)the National Natural Science Foundation of China(No.41907383)。
文摘Biogenic volatile organic compounds(BVOCs)are widely involved in a variety of atmospheric chemical processes due to their high reactivity and species diversity.To date,however,research on BVOCs in agroecosystems,particularly fruit trees,remains scarce despite their large cultivation area and economic interest.BVOC emissions from different organs(leaf or fruit)of apple and peach trees were investigated throughout the stages of fruit development(FS,fruit swelling;FC,fruit coloration;FM,fruit maturity;and FP,fruit postharvest)using a proton-transfer-reaction mass spectrometer.Results indicated that methanol was the most abundant compound emitted by the leaf(apple tree leaf 492.5±47.9 ng/(g·hr),peach tree leaf 938.8±154.5 ng/(g·hr)),followed by acetic acid and green leaf volatiles.Beside the above three compounds,acetaldehyde had an important contribution to the emissions from the fruit.Overall,the total BVOCs(sum of eight compounds studied in this paper)emitted by both leaf and fruit gradually decreased along the fruit development,although the effect was significant only for the leaf.The leaf(2020.8±258.8 ng/(g·hr))was a stronger BVOC emitter than the fruit(146.0±45.7 ng/(g·hr))(P=0.006),and there were no significant differences in total BVOC emission rates between apple and peach trees.These findings contribute to our understanding on BVOC emissions from different plant organs and provide important insights into the variation of BVOC emissions across different fruit developmental stages.