峨眉冷杉林是青藏高原东缘亚高山暗针叶林的重要组成部分,其自然更新对全球变化非常敏感,是研究气候变化对陆地生态系统影响的代表性森林类型。以峨眉冷杉幼苗为研究对象,以开顶式增温小室(Open top chambers,OTCs)和电热棒联合的方式...峨眉冷杉林是青藏高原东缘亚高山暗针叶林的重要组成部分,其自然更新对全球变化非常敏感,是研究气候变化对陆地生态系统影响的代表性森林类型。以峨眉冷杉幼苗为研究对象,以开顶式增温小室(Open top chambers,OTCs)和电热棒联合的方式增加环境温度,人为添加不同类型凋落物(A,75%峨眉冷杉针叶+25%杜鹃荚灌木叶凋落物;B,55%峨眉冷杉针叶+45%杜鹃荚灌木叶凋落物),共设置4个处理:(1)凋落物A+增温T(A-T);(2)凋落物B+增温T(B-T);(3)凋落物A+环境温度T0(A-T0);(4)凋落物B+环境温度T0(B-T0)。研究增温和两种类型凋落物联合作用下峨眉冷杉幼苗的生理生态响应特征。得到以下结果:(1)在环境温度下,A型凋落物情景下的冷杉幼苗的电导率、丙二醛和脯氨酸含量、超氧阴离子自由基产生率比B型情景下高;而可溶性糖和淀粉含量、超氧化物歧化酶(SOD)、抗坏血酸过氧化物氢酶(APX)和过氧化氢酶(CAT)活性比B型凋落物情景下低。说明在当前环境温度下,B型凋落物比A型凋落物更加适合冷杉幼苗的生长。(2)在A型凋落物情景下,增温处理显著增加了冷杉幼苗叶片的自由脯氨酸含量和过氧化氢浓度;在B型凋落物情景下,增温处理显著降低了冷杉幼苗丙二醛、自由脯氨酸含量、可溶性糖和淀粉含量,增加了超氧阴离子自由基产生速率。可见,与A型凋落物相比,增温使得B型凋落物情景下的冷杉幼苗膜伤害程度减小。(3)不同类型凋落物与增温的联合作用均降低了冷杉幼苗的可溶性糖和淀粉含量。与A-T处理相比,B-T处理下冷杉幼苗叶片的电导率、丙二醛和脯氨酸含量更低,而POD、APX、GR、CAT抗氧化酶活性却更高。研究结果表明,针叶成分相对较少的B型凋落物更有利于峨眉冷杉幼苗适应未来气候变暖情景。展开更多
The induces defects and especially the EL2 defect in 10 MeV electron irradiated undoped semi-insulating(SI) LEC GaAs samples were investigated by using optical transient current spectroscopy (OTCS)technique.The resul...The induces defects and especially the EL2 defect in 10 MeV electron irradiated undoped semi-insulating(SI) LEC GaAs samples were investigated by using optical transient current spectroscopy (OTCS)technique.The results indicate that the density of EL2 defect of irradiated GaAs decreases and the density of EL6 defect in-creases at lower fluence levels. At higher fluences, we observe an increase in density of the EL2 level, howev-er,the density of the EL6 is decreased. It is suggested that on lower fluences, 10 MeV electron irradiation causes the dissociation of the EL2 defect, and may be used to decrease the main donor level EL2 in SI-GaAs.展开更多
Ethylenediurea(EDU)has been used as a chemical protectant against ozone(O3).However,its protective effect and physiological mechanisms are still uncertain.The present study aimed to investigate the changes of foliar v...Ethylenediurea(EDU)has been used as a chemical protectant against ozone(O3).However,its protective effect and physiological mechanisms are still uncertain.The present study aimed to investigate the changes of foliar visible injury,physiological characteristics and emission rates of volatile organic compounds(VOCs)in one-year-old Populus alba"Berolinensis"saplings pretreated with EDU and exposed to elevated O3(EO,120μg/m3).The results showed that foliar visible injury symptoms under EO were significantly alleviated in plants with EDU application(p<0.05).Under EO,net photosynthetic rate,the maximum photochemical efficiency of PSII and the photochemical efficiency of PSII of plants pretreated with 300 and600 mg/L EDU were similar to unexposed controls and significantly higher compared to EOstressed plants without EDU pretreatment,respectively.Malondialdehyde content was highest in EO without EDU and decreased significantly by 14.9%and 21.3%with 300 and600 mg/L EDU pretreatment,respectively.EDU pretreatment alone increased superoxide dismutase activity by 10-fold in unexposed plants with further increases of 88.4%and 37.5%in EO plants pretreated with 300 and 600 mg/L EDU pretreatment,respectively(p<0.05).Abscisic acid content declined under EO relative to unexposed controls with the effect partially reversed by EDU pretreatments.Similarly,VOCs emission rate declined under EO relative to unexposed plants with a recovery of emission rate observed with 300 and 600 mg/L EDU pretreatment.These findings provided significant evidence that EDU exerted a beneficial effect and protection on the tested plants against O3 stress.展开更多
In order to explore the response of soil respiration in grassland to global warming,we carried out a warming experiment with open top chambers(OTCs)in the subalpine meadow,Mount Wutai in north China.Our results showed...In order to explore the response of soil respiration in grassland to global warming,we carried out a warming experiment with open top chambers(OTCs)in the subalpine meadow,Mount Wutai in north China.Our results showed in the subalpine meadow across 2500-2700 m above the sea level(ASL),with OTCs,soil respiration increased by 2.00μmol·m^(-2)·s^(-1)as soil temperature increased by 1.25℃on average.Warming decreased soil moisture over the experiment periods except in October 2019 when snow melted in OTCs.Warming effect on soil respiration peaked at 178.31%in October 2019.In control and warming treatment,based on exponential regression equations,soil temperature alone accounted for 85.3%and 61.2%of soil respiration variation,respectively.In control treatment soil moisture alone explained 23.2%of soil respiration variation based on the power regression equation while in warming treatment they were not significantly correlated with each other.The response of soil respiration to warming relied on altitudes as well as the time of the year,but was not inhibited by soil moisture,labile carbon pool,and available nitrogen.We concluded soil temperature was the main factor influencing soil respiration,and global warming would stimulate soil respiration in the subalpine meadows of Mount Wutai in the future.Our analysis provided new data on characteristics and mechanisms of the response of soil respiration to warming,and helped to further understand the relationship between carbon cycle and climate change.展开更多
Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in ...Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in the Yellow River Delta of Dongying City, China. With data collected through online transmission and in-situ sensors, the attributes and patterns of realized OTCs warming are demonstrated.The authors also quantified the preliminary influence of experimental chamber warming on plant traits.OTCs produced an elevated average air temperature of 0.8°C(relative to controls) during the growing season(June to October) of 2018, and soil temperatures actually decreased by 0.54°C at a depth of 5 cm and 0.46°C at a depth of 30 cm in the OTCs. Variations in diel patterns of warming depend greatly on the heat sources of incoming radiation in the daytime versus soil heat flux at night. Warming effects were often larger during instantaneous analyses and influenced OTCs air temperatures from-2.5°C to 8.3°C dependent on various meteorological conditions at any given time, ranging from cooling influences from vertical heat exchange and vegetation to radiation-associated warming. Night-time temperature depressions in the OTCs were due to the low turbulence inside OTCs and changes in surface soilatmosphere heat transfer. Plant shoot density, basal diameter, and biomass of Phragmites decreased by23.2%, 6.3%, and 34.0%, respectively, under experimental warming versus controls, and plant height increased by 4.3%, reflecting less carbon allocation to stem structures as plants in the OTCs experienced simultaneous wind buffering. While these passive-warming OTCs created the desired warming effects both to the atmosphere and soils, pest damages on the plant leaves and lodging within the OTCs were extensive and serious, creating the need to consider control options for these chambers and the replicated OTCs studies underway in other Chinese Phragmites marshes(Panjin and Yancheng).展开更多
文摘峨眉冷杉林是青藏高原东缘亚高山暗针叶林的重要组成部分,其自然更新对全球变化非常敏感,是研究气候变化对陆地生态系统影响的代表性森林类型。以峨眉冷杉幼苗为研究对象,以开顶式增温小室(Open top chambers,OTCs)和电热棒联合的方式增加环境温度,人为添加不同类型凋落物(A,75%峨眉冷杉针叶+25%杜鹃荚灌木叶凋落物;B,55%峨眉冷杉针叶+45%杜鹃荚灌木叶凋落物),共设置4个处理:(1)凋落物A+增温T(A-T);(2)凋落物B+增温T(B-T);(3)凋落物A+环境温度T0(A-T0);(4)凋落物B+环境温度T0(B-T0)。研究增温和两种类型凋落物联合作用下峨眉冷杉幼苗的生理生态响应特征。得到以下结果:(1)在环境温度下,A型凋落物情景下的冷杉幼苗的电导率、丙二醛和脯氨酸含量、超氧阴离子自由基产生率比B型情景下高;而可溶性糖和淀粉含量、超氧化物歧化酶(SOD)、抗坏血酸过氧化物氢酶(APX)和过氧化氢酶(CAT)活性比B型凋落物情景下低。说明在当前环境温度下,B型凋落物比A型凋落物更加适合冷杉幼苗的生长。(2)在A型凋落物情景下,增温处理显著增加了冷杉幼苗叶片的自由脯氨酸含量和过氧化氢浓度;在B型凋落物情景下,增温处理显著降低了冷杉幼苗丙二醛、自由脯氨酸含量、可溶性糖和淀粉含量,增加了超氧阴离子自由基产生速率。可见,与A型凋落物相比,增温使得B型凋落物情景下的冷杉幼苗膜伤害程度减小。(3)不同类型凋落物与增温的联合作用均降低了冷杉幼苗的可溶性糖和淀粉含量。与A-T处理相比,B-T处理下冷杉幼苗叶片的电导率、丙二醛和脯氨酸含量更低,而POD、APX、GR、CAT抗氧化酶活性却更高。研究结果表明,针叶成分相对较少的B型凋落物更有利于峨眉冷杉幼苗适应未来气候变暖情景。
文摘The induces defects and especially the EL2 defect in 10 MeV electron irradiated undoped semi-insulating(SI) LEC GaAs samples were investigated by using optical transient current spectroscopy (OTCS)technique.The results indicate that the density of EL2 defect of irradiated GaAs decreases and the density of EL6 defect in-creases at lower fluence levels. At higher fluences, we observe an increase in density of the EL2 level, howev-er,the density of the EL6 is decreased. It is suggested that on lower fluences, 10 MeV electron irradiation causes the dissociation of the EL2 defect, and may be used to decrease the main donor level EL2 in SI-GaAs.
基金supported by the National Natural Science Foundation of China (Nos. 41675153, 31870458, 31270518, 31170573, 31670412)
文摘Ethylenediurea(EDU)has been used as a chemical protectant against ozone(O3).However,its protective effect and physiological mechanisms are still uncertain.The present study aimed to investigate the changes of foliar visible injury,physiological characteristics and emission rates of volatile organic compounds(VOCs)in one-year-old Populus alba"Berolinensis"saplings pretreated with EDU and exposed to elevated O3(EO,120μg/m3).The results showed that foliar visible injury symptoms under EO were significantly alleviated in plants with EDU application(p<0.05).Under EO,net photosynthetic rate,the maximum photochemical efficiency of PSII and the photochemical efficiency of PSII of plants pretreated with 300 and600 mg/L EDU were similar to unexposed controls and significantly higher compared to EOstressed plants without EDU pretreatment,respectively.Malondialdehyde content was highest in EO without EDU and decreased significantly by 14.9%and 21.3%with 300 and600 mg/L EDU pretreatment,respectively.EDU pretreatment alone increased superoxide dismutase activity by 10-fold in unexposed plants with further increases of 88.4%and 37.5%in EO plants pretreated with 300 and 600 mg/L EDU pretreatment,respectively(p<0.05).Abscisic acid content declined under EO relative to unexposed controls with the effect partially reversed by EDU pretreatments.Similarly,VOCs emission rate declined under EO relative to unexposed plants with a recovery of emission rate observed with 300 and 600 mg/L EDU pretreatment.These findings provided significant evidence that EDU exerted a beneficial effect and protection on the tested plants against O3 stress.
基金Supported by Xinzhou Teachers University Project(2018KY02)Shanxi Province Colleges/Universities Discipline Group Construction Plan Project for Service and Industry Innovation"Ecology and Cultural Tourism Discipline Group for Mount Wutai"Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi(20210122)。
文摘In order to explore the response of soil respiration in grassland to global warming,we carried out a warming experiment with open top chambers(OTCs)in the subalpine meadow,Mount Wutai in north China.Our results showed in the subalpine meadow across 2500-2700 m above the sea level(ASL),with OTCs,soil respiration increased by 2.00μmol·m^(-2)·s^(-1)as soil temperature increased by 1.25℃on average.Warming decreased soil moisture over the experiment periods except in October 2019 when snow melted in OTCs.Warming effect on soil respiration peaked at 178.31%in October 2019.In control and warming treatment,based on exponential regression equations,soil temperature alone accounted for 85.3%and 61.2%of soil respiration variation,respectively.In control treatment soil moisture alone explained 23.2%of soil respiration variation based on the power regression equation while in warming treatment they were not significantly correlated with each other.The response of soil respiration to warming relied on altitudes as well as the time of the year,but was not inhibited by soil moisture,labile carbon pool,and available nitrogen.We concluded soil temperature was the main factor influencing soil respiration,and global warming would stimulate soil respiration in the subalpine meadows of Mount Wutai in the future.Our analysis provided new data on characteristics and mechanisms of the response of soil respiration to warming,and helped to further understand the relationship between carbon cycle and climate change.
基金jointly funded by the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao)(2022QNLM 040003-3)the National Key R&D Program of China (2016YFE0109600)+3 种基金National Natural Science Foundation of China (U22A20558, 41240022, 41876057, 40872167, 41602143)China Geological Survey (1212010611402, GZH201200503, and DD20160144)by in-kind support from the Land Carbon ProgramLand Change Science R&D Program of the United States Geological Survey。
文摘Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in the Yellow River Delta of Dongying City, China. With data collected through online transmission and in-situ sensors, the attributes and patterns of realized OTCs warming are demonstrated.The authors also quantified the preliminary influence of experimental chamber warming on plant traits.OTCs produced an elevated average air temperature of 0.8°C(relative to controls) during the growing season(June to October) of 2018, and soil temperatures actually decreased by 0.54°C at a depth of 5 cm and 0.46°C at a depth of 30 cm in the OTCs. Variations in diel patterns of warming depend greatly on the heat sources of incoming radiation in the daytime versus soil heat flux at night. Warming effects were often larger during instantaneous analyses and influenced OTCs air temperatures from-2.5°C to 8.3°C dependent on various meteorological conditions at any given time, ranging from cooling influences from vertical heat exchange and vegetation to radiation-associated warming. Night-time temperature depressions in the OTCs were due to the low turbulence inside OTCs and changes in surface soilatmosphere heat transfer. Plant shoot density, basal diameter, and biomass of Phragmites decreased by23.2%, 6.3%, and 34.0%, respectively, under experimental warming versus controls, and plant height increased by 4.3%, reflecting less carbon allocation to stem structures as plants in the OTCs experienced simultaneous wind buffering. While these passive-warming OTCs created the desired warming effects both to the atmosphere and soils, pest damages on the plant leaves and lodging within the OTCs were extensive and serious, creating the need to consider control options for these chambers and the replicated OTCs studies underway in other Chinese Phragmites marshes(Panjin and Yancheng).