A fully 3D OSEM reconstruction method for positron emission tomography (PET) based on symmetries and sparse matrix technique is described. Great savings in both storage space and computation time were achieved by ex...A fully 3D OSEM reconstruction method for positron emission tomography (PET) based on symmetries and sparse matrix technique is described. Great savings in both storage space and computation time were achieved by exploiting the symmetries of scanner and sparseness of the system matrix. More reduction of storage requirement was obtained by introducing the approximation of system matrix. Iteration-filter was performed to restrict image noise in reconstruction. Performances of simulation data and phantom data got from Micro-PET (Type: Epuls-166) demonstrated that similar image quality was achieved using the approximation of the system matrix.展开更多
The discharge channel is a crucial diagnostic tool for identifying the properties of gas switches.However,single-view images cannot easily be used to inherently understand the discharge channel characteristics of trig...The discharge channel is a crucial diagnostic tool for identifying the properties of gas switches.However,single-view images cannot easily be used to inherently understand the discharge channel characteristics of trigger electrodes.A reconstruction method of the discharge channel in gas switches is proposed based on a multi-axis tomography technique,which uses very few projections of optical images to reconstruct the location of a multichannel discharge in annular electrodes.In this paper,an algorithm named TVM-OSEM(total variation minimization ordered subsets expectation maximization)is proposed,which can effectively remove artifact noise to improve the reconstruction accuracy of discharge channels.The method is validated against simulations of a radiator with high-density-difference boundary.The calculated discharge channel distribution from one experiment is presented.展开更多
基金Supported by National High Technology Research and Development Program of China (2006AA020803)National Basic Research Program of China (2006CB705700)
文摘A fully 3D OSEM reconstruction method for positron emission tomography (PET) based on symmetries and sparse matrix technique is described. Great savings in both storage space and computation time were achieved by exploiting the symmetries of scanner and sparseness of the system matrix. More reduction of storage requirement was obtained by introducing the approximation of system matrix. Iteration-filter was performed to restrict image noise in reconstruction. Performances of simulation data and phantom data got from Micro-PET (Type: Epuls-166) demonstrated that similar image quality was achieved using the approximation of the system matrix.
基金supported by National Natural Science Foundation of China(No.11575147)the Distinguished Youth Fund(No.JQZQ021901)。
文摘The discharge channel is a crucial diagnostic tool for identifying the properties of gas switches.However,single-view images cannot easily be used to inherently understand the discharge channel characteristics of trigger electrodes.A reconstruction method of the discharge channel in gas switches is proposed based on a multi-axis tomography technique,which uses very few projections of optical images to reconstruct the location of a multichannel discharge in annular electrodes.In this paper,an algorithm named TVM-OSEM(total variation minimization ordered subsets expectation maximization)is proposed,which can effectively remove artifact noise to improve the reconstruction accuracy of discharge channels.The method is validated against simulations of a radiator with high-density-difference boundary.The calculated discharge channel distribution from one experiment is presented.