以旱稻田间试验资料为基础,对水稻生长模拟模型ORY ZA 2000模拟旱稻生长进行参数校正和验证,图解和回归分析结果显示ORY ZA 2000模拟旱稻生物量、产量、作物吸氮量的模拟值与观测值基本呈线性关系,模拟效果良好,但对土壤水分的模拟效果...以旱稻田间试验资料为基础,对水稻生长模拟模型ORY ZA 2000模拟旱稻生长进行参数校正和验证,图解和回归分析结果显示ORY ZA 2000模拟旱稻生物量、产量、作物吸氮量的模拟值与观测值基本呈线性关系,模拟效果良好,但对土壤水分的模拟效果欠佳,需做进一步研究。应用校正和验证的结果,结合肥料效应函数原理,对旱稻不同灌溉方式和密度管理下的氮肥经济最佳施肥量做了探讨,初步得出了该地区旱稻栽培氮肥经济最佳施肥量,丰富了作物模拟和节水农业的理论和实践,对以后旱稻发展及栽培管理有一定的参考价值。展开更多
Rice crop growth and yield in the north Iran are affected by crop duration and phenology.The purpose of this study was to calibrate and validate the ORYZA2000 model under potential production based on experimental dat...Rice crop growth and yield in the north Iran are affected by crop duration and phenology.The purpose of this study was to calibrate and validate the ORYZA2000 model under potential production based on experimental data for simulating and quantifying the phenological development,crop duration and yield prediction of rice crop influenced by different seedling ages.In order to calibrate and validate the crop parameters of ORYZA2000 model,a two-year field experiment was conducted under potential growth condition for transplanted lowland rice during the 2008-2009 rice growing seasons,using three rice varieties with three seedling ages(17,24 and 33 days old).The results showed that the seedling age changed crop duration from 7 to 10 d.The ORYZA2000 model could predict well,but consistently underestimated the length of growing period.The range in normalized root mean square error(RMSEn) values for each phenological stage was between 4% and 6%.From our evaluation,we concluded that ORYZA2000 was sufficiently accurate in simulation of yield,leaf area index(LAI) and biomass of crop organs over time.On average,RMSEn values were 13%-15% for total biomass,18%-21% for green leaf biomass,17%-20% for stem biomass,16%-23% for panicle biomass and 24%-26% for LAI.The RMSEn values for final yield and biomass were 12%-16% and 6%-9%,respectively.Generally,the model simulated LAI,an exceeded measured value for younger seedlings,and best-fit was observed for older seedlings of short-duration varieties.The results revealed that the ORYZA2000 model can be applied as a supportive research tool for selecting the most appropriate strategies for rice yield improvement across the north Iran.展开更多
Rice(Oryza sativa L.) is one of the most important staple crops in China. Increasing atmospheric greenhouse gas concentrations and associated climate change may greatly affect rice production. We assessed the potentia...Rice(Oryza sativa L.) is one of the most important staple crops in China. Increasing atmospheric greenhouse gas concentrations and associated climate change may greatly affect rice production. We assessed the potential impacts of climate change on cold rice production in the Heilongjiang province, one of China's most important rice production regions. Data for a baseline period(1961–1990) and the period 2010–2050 in A2 and B2 scenarios were used as input to drive the rice model ORYZA2000 with and without accounting for the effects of increasing atmospheric CO2 concentration. The results indicate that mean,maximum, and minimum temperature during the rice growing season, in the future period considered, would increase by 1.8 °C under the A2 scenario and by 2.2 °C under the B2 scenario compared with those in the baseline. The rate of change in average maximum and minimum temperatures would increase by 0.6 °C per 10-year period under the A2 scenario and by 0.4 °C per 10-year period under the B2 scenario. Precipitation would increase slightly in the rice growing season over the next 40 years. The rice growing season would be shortened and the yield would increase in most areas in the Heilongjiang province. Without accounting for CO2 effect, the rice growing season in the period 2010–2050 would be shortened by 4.7 and 5.8 days,and rice yields would increase by 11.9% and 7.9%, under the A2 and B2 scenarios, respectively.Areas with simulated rice yield increases greater than 30.0% were in the Xiaoxing'an Mountain region. The simulation indicated a decrease in yield of less than 15% in the southwestern Songnen Plain. The rate of change in simulated rice yield was 5.0% and 2.5% per 10 years under the A2 and B2 scenarios, respectively. When CO2 effect was accounted for, rice yield increased by 44.5% and 31.3% under the A2 and B2 scenarios, respectively. The areas of increasing yield were sharply expanded. The area of decreasing yield in the western region of Songnen Plains disappeared when increasing CO2 concentra展开更多
文摘以旱稻田间试验资料为基础,对水稻生长模拟模型ORY ZA 2000模拟旱稻生长进行参数校正和验证,图解和回归分析结果显示ORY ZA 2000模拟旱稻生物量、产量、作物吸氮量的模拟值与观测值基本呈线性关系,模拟效果良好,但对土壤水分的模拟效果欠佳,需做进一步研究。应用校正和验证的结果,结合肥料效应函数原理,对旱稻不同灌溉方式和密度管理下的氮肥经济最佳施肥量做了探讨,初步得出了该地区旱稻栽培氮肥经济最佳施肥量,丰富了作物模拟和节水农业的理论和实践,对以后旱稻发展及栽培管理有一定的参考价值。
基金supported by HARAZ-Extension and Technology Development Center (HETDC) in Amol City,Iran
文摘Rice crop growth and yield in the north Iran are affected by crop duration and phenology.The purpose of this study was to calibrate and validate the ORYZA2000 model under potential production based on experimental data for simulating and quantifying the phenological development,crop duration and yield prediction of rice crop influenced by different seedling ages.In order to calibrate and validate the crop parameters of ORYZA2000 model,a two-year field experiment was conducted under potential growth condition for transplanted lowland rice during the 2008-2009 rice growing seasons,using three rice varieties with three seedling ages(17,24 and 33 days old).The results showed that the seedling age changed crop duration from 7 to 10 d.The ORYZA2000 model could predict well,but consistently underestimated the length of growing period.The range in normalized root mean square error(RMSEn) values for each phenological stage was between 4% and 6%.From our evaluation,we concluded that ORYZA2000 was sufficiently accurate in simulation of yield,leaf area index(LAI) and biomass of crop organs over time.On average,RMSEn values were 13%-15% for total biomass,18%-21% for green leaf biomass,17%-20% for stem biomass,16%-23% for panicle biomass and 24%-26% for LAI.The RMSEn values for final yield and biomass were 12%-16% and 6%-9%,respectively.Generally,the model simulated LAI,an exceeded measured value for younger seedlings,and best-fit was observed for older seedlings of short-duration varieties.The results revealed that the ORYZA2000 model can be applied as a supportive research tool for selecting the most appropriate strategies for rice yield improvement across the north Iran.
基金supported by the National Natural Science Foundation of China (30771249)the National Key Technology R&D Program of China (2012BAD20B04)
文摘Rice(Oryza sativa L.) is one of the most important staple crops in China. Increasing atmospheric greenhouse gas concentrations and associated climate change may greatly affect rice production. We assessed the potential impacts of climate change on cold rice production in the Heilongjiang province, one of China's most important rice production regions. Data for a baseline period(1961–1990) and the period 2010–2050 in A2 and B2 scenarios were used as input to drive the rice model ORYZA2000 with and without accounting for the effects of increasing atmospheric CO2 concentration. The results indicate that mean,maximum, and minimum temperature during the rice growing season, in the future period considered, would increase by 1.8 °C under the A2 scenario and by 2.2 °C under the B2 scenario compared with those in the baseline. The rate of change in average maximum and minimum temperatures would increase by 0.6 °C per 10-year period under the A2 scenario and by 0.4 °C per 10-year period under the B2 scenario. Precipitation would increase slightly in the rice growing season over the next 40 years. The rice growing season would be shortened and the yield would increase in most areas in the Heilongjiang province. Without accounting for CO2 effect, the rice growing season in the period 2010–2050 would be shortened by 4.7 and 5.8 days,and rice yields would increase by 11.9% and 7.9%, under the A2 and B2 scenarios, respectively.Areas with simulated rice yield increases greater than 30.0% were in the Xiaoxing'an Mountain region. The simulation indicated a decrease in yield of less than 15% in the southwestern Songnen Plain. The rate of change in simulated rice yield was 5.0% and 2.5% per 10 years under the A2 and B2 scenarios, respectively. When CO2 effect was accounted for, rice yield increased by 44.5% and 31.3% under the A2 and B2 scenarios, respectively. The areas of increasing yield were sharply expanded. The area of decreasing yield in the western region of Songnen Plains disappeared when increasing CO2 concentra