According to the traditional immunization procedure, after the first injection of the sample A (emulsion of aimed antigen and Freund's complete adjuvant) to immunize rabbit, successive injections of the sample B (...According to the traditional immunization procedure, after the first injection of the sample A (emulsion of aimed antigen and Freund's complete adjuvant) to immunize rabbit, successive injections of the sample B (emulsion of aimed antigen and Freund's incomplete adjuvant) were followed every 2-4 weeks. In general,high titer of the corresponding polyclonal antisera will be observed after 4-5 injections of sample B in 3-4months. This report presents a simply modified procedure that was able to stimulate the antisera formation in one month and achieve enough avidity to satisfy either Western blot or immunohistochemistry analysis.It just applied an additional injection of the sample A to the rabbit at the 3rd day after the primary immunization injection. You could gain the high titer of the antisera right after the first sample B injection in one month. This method has produced the desired results in three different recombinant antigens with different molecular weight (5.9 KD-55 KD) expressed from prokaryotic or eukaryotic cells.展开更多
AIM: To study the effect of cholecystokinin-octapeptide (CCK-8) on systemic hypotension and cytokine production in lipopolysaccharide (LPS)-induced endotoxic shock (ES) rats. METHODS: The changes of blood pressure wer...AIM: To study the effect of cholecystokinin-octapeptide (CCK-8) on systemic hypotension and cytokine production in lipopolysaccharide (LPS)-induced endotoxic shock (ES) rats. METHODS: The changes of blood pressure were observed using physiological record instrument in four groups of rats: LPS (8mg.kg(-1),iv) induced ES; CCK-8 (40 microg.kg(-1), iv) pretreatment 10 min before LPS (8mg.kg(-1)); CCK-8 (40 micro.kg(-1), iv) or normal saline (control) groups. Differences in tissue and circulating specificity of the proinflammatory cytokines (TNF-alpha, IL-1beta and IL-6) were assayed with ELISA kits. RESULTS: CCK-8 reversed LPS-induced decrease of mean artery blood pressure (MABP) in rats. Compared with control, LPS elevated the serum level of IL-6 significantly (3567 +/- 687 ng.L(-1) vs 128 +/- 22 ng.L(-1), P【0.01), while contents of TNF-alpha and IL-1beta elevated significantly (277 +/- 86 ng.L(-1) vs not detectable and 43 +/- 9 ng.L(-1) vsnot detectable, P【0.01) but less extent than IL-6. CCK-8 significantly inhibited the LPS-induced increase in serum TNF-alpha IL-1beta and IL-6. LPS elevated spleen and lung content of IL-1beta significantly (5184 +/- 85 ng.L(-1) vs 1047 +/- 21 ng.L(-1) and 4050 +/- 614 ng.L(-1) vs not detectable, P【0.01), while levels of TNF-alpha and IL-6 also rose significantly but in less extent than IL-1beta. CCK-8 inhibited the LPS-induced increase of the cytokines in spleen and lung. In the heart, CCK-8 significantly inhibited LPS-induced increase of TNF-alpha (864 +/- 123 ng.L(-1) in CCK-8+LPS group vs 1599 +/- 227 ng.L(-1) in LPS group, P 【 0.01), and IL-1beta (282 +/- 93 ng.L(-1) in CCK-8+LPS group vs 621 +/- 145ng.L(-1) in LPS group, P 【 0.01). CONCLUSION: CCK-8 reverses ES, which may be related to its inhibitory effect on the overproduction of cytokines.展开更多
A Burgess Shale-type biota is, in part, characterized by a wide diversity of taxa and soft-part preservation. Each provides unique historical insights into early metazoan evolution. Among the more than 40 globally dis...A Burgess Shale-type biota is, in part, characterized by a wide diversity of taxa and soft-part preservation. Each provides unique historical insights into early metazoan evolution. Among the more than 40 globally distributed biotas, the early Cambrian Chengjiang and Middle Cambrian Burgess-type biotas are the largest. The Kaili Biota, from the earliest Middle Cambrian of Guizhou, China, contains representatives of 110 metazoan genera belonging to 10 phyla. It contains many well-persevered soft-bodied specimens. This Chinese biota has become the third most taxonomically diverse Burgess Shale-type fauna. Because the Kaili Biota formed in an outer-shelf environment, its main faunal character is large numbers of eocrinoids and planktoic trilobites. The Kaili is younger than the Chengjiang Biota but older than the Canadian Burgess Shale Biota; it shares 30 genera with the Chengjiang and 38 genera with the Burgess Biota. The Kaili Biota displays a taphonomic window to the diversification and evolution of marine offshore organisms covering 5.13 million years between the Early and Middle Cambrian.展开更多
The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted wor...The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.展开更多
DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and e...DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4^+- N and NO3^--N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carded out. The results showed that DP enhanced the mean NH4^+-N concentrations by 19.1%-24.3%, but reduced the mean NO3^--N concentrations by 44.9%-56.6% in the leachate, under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%-30.9%, 14.9%-43.5%, and 14.7%-31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP. It is proposed that DMPP has the potential to either reduce NO3^--N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.展开更多
As the worldwide commercialization of genetically modified organisms (GMOs) increases and consumers concern the safety of GMOs, many countries and regions are issuing labeling regulations on GMOs and their products....As the worldwide commercialization of genetically modified organisms (GMOs) increases and consumers concern the safety of GMOs, many countries and regions are issuing labeling regulations on GMOs and their products. Analytical methods and their standardization for GM ingredients in foods and feed are essential for the implementation of labeling regulations. To date, the GMO testing methods are mainly based on the inserted DNA sequences and newly produced proteins in GMOs. This paper presents an overview of GMO testing methods as well as their standardization.展开更多
A bench-scale cyclic activated sludge technology (CAST) was operated to study the biological phosphorus removal performance and a series of batch tests was carried out to demonstrate the accumulation of denitrifying...A bench-scale cyclic activated sludge technology (CAST) was operated to study the biological phosphorus removal performance and a series of batch tests was carried out to demonstrate the accumulation of denitrifying polyphosphate-accumulating organisms (DNPAOs) in CAST system. Under all operating conditions, step-feed CAST with enough carbon sources in influent had the highest nitrogen and phosphorus removal efficiency as well as good sludge settling performance. The average removal rate of COD, NH4^+-N, PO4^3--P and total nitrogen (TN) was 88.2%, 98.7%, 97.5% and 92.1%, respectively. The average sludge volume index (SVI) was 133 mL/g. The optimum anaerobic/aerobic/anoxic (AOA) conditions for the cultivation of DNPAOs could be achieved by alternating anoxic/oxic operational strategy, thus a significant denitrifying phosphorus removal occurred in step-feed CAST. The denitrification of NO^x--N completed quickly due to step-feed operation and enough carbon sources, which could enhance phosphorus release and further phosphorus uptake capability of the system. Batch tests also proved that polyphosphate-accumulating organisms (PAOs) in the step-feed process had strong denitrifying phosphorus removal capacity. Both nitrate and nitrite could be used as electron acceptors in denitrifying phosphorus removal. Low COD supply with step-feed operation strategy would favor DNPAOs accumulation.展开更多
Study on the coagulation of four species of red tide organisms (Nitzschia pungens, Skeletonema costatum, Prorocentrum minimum and Noctiluca scintillans) with montmorillonite, and the effect of montmorillonite pretrea...Study on the coagulation of four species of red tide organisms (Nitzschia pungens, Skeletonema costatum, Prorocentrum minimum and Noctiluca scintillans) with montmorillonite, and the effect of montmorillonite pretreatment on the coagulation shows that the capability for montmorillonite to coagulate with them is in the order: N. pungens > S. costatum > P. minimum > N. scintillans. The coagulation is discussed from the aspects of the structure, shape, size, movement, habit, etc. of different species and the results are explained theoretically. The experimental results also indicate that the treatment of montmorillonite with acid can enhance its coagulating capability. This is due to the fact that A1(OH2)6+3, exchanged from the clay lattice by hydrogen ion H+, forms hydroxy-aluminum polymers on the surface of the montmorillonite. The hydroxy-aluminum polymers positively charge and increase the positive characteristic of the clay surface, and also serves as a bridge between adjacent surfaces of particles. These two functions enhance the montmorillonite's capability for coagulating with the organism cells.展开更多
Patients with liver cirrhosis are susceptible to infections due to various mechanisms, including abnormalities of humoral and cell-mediated immunity and occurrence of bacterial translocation from the intestine. Bacter...Patients with liver cirrhosis are susceptible to infections due to various mechanisms, including abnormalities of humoral and cell-mediated immunity and occurrence of bacterial translocation from the intestine. Bacterial infections are common and represent a reason for progression to liver failure and increased mortality. Fungal infections, mainly caused by Candida spp., are often associated to delayed diagnosis and high mortality rates. High level of suspicion along with prompt diagnosis and treatment of infections are warranted. Bacterial and fungal infections negatively affect the outcomes of liver transplant candidates and recipients, causing disease progression among patients on the waiting list and increasing mortality, especially in the early posttransplant period. Abdominal, biliary tract, and bloodstream infections caused by Gram-negative bacteria [e.g., Enterobacteriaceae and Pseudomonas aeruginosa(P. aeruginosa)] and Staphylococcus spp. are commonly encountered in liver transplant recipients. Due to frequent exposure to broad-spectrum antibiotics, invasive procedures, and prolonged hospitalizations, these patients are especially at risk of developing infections caused by multidrug resistant bacteria. The increase in antimicrobial resistance hampers the choice of an adequate empiric therapy and warrants the knowledge of the local microbial epidemiology and the implementation of infection control measures. The main characteristics and the management of bacterial and fungal infections in patients with liver cirrhosis and liver transplant recipients are presented.展开更多
Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) protocol was employed for revealing microbial community structure and succession in a sequential anaerobic and aerobic reactor perform...Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) protocol was employed for revealing microbial community structure and succession in a sequential anaerobic and aerobic reactor performing enhanced biological phosphorus removal (EBPR) during start-up period. High phosphorus removal was achieved after 15 d. On day 30, phosphorus removal efficiency reached to 83.2% and the start-up was finished. DGGE profiles of periodical sludge samples showed that dominant microbial species were 19 OTUs (operational taxonomy units). Unweighted pair-group method using arithmetic averages (UPGMA) clustering analysis revealed that rapid community succession correlated to low phosphorus removal rate and high phosphorus removal efficiency reflected on steady community structure. Sequencing results indicated that determined sequences (12 OTUs) belonged to Proteobacterium, Actinobacteria, Gemmatimonadales and unaffiliate group. Proteobacterium, Tetrasphaera elongate and Gemmatimonas aurantiaca may act important roles in phosphorus removal. With little amount as known glycogen accumulating organisms, Candidatus Competibacter phosphatis still at accumulating-phase had limited effect on microbial community structure. When climax community was obtained, dominant microbes were 14 OTUs. Microbes in a large amount were uncultured bacterium Thauera sp., uncultured y-Proteobacterium and Tetrasphaera elongata.展开更多
Surface modification of montmorillonite by means of Mg<sup>2+</sup> insertion reaction has been studied and a positively charged montmorillonite has been prepared. The effects of preparation temperature an...Surface modification of montmorillonite by means of Mg<sup>2+</sup> insertion reaction has been studied and a positively charged montmorillonite has been prepared. The effects of preparation temperature and Mg<sup>2+</sup> concentration on the positive charge property of the clay and on the clay coagulating Heterosigma akashiwo have been studied. The results showed that the modified clay enhanced the coagulation and the used amount decreased to 1/5—1/10 of the original. The removal rates of Heterosigma akashiwo were correlated positively with positive charge on the clay in accordance with theoretical model.展开更多
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobi...A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.展开更多
Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were...Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.展开更多
基金We would like to thank Peifang Ping,BaozhenPeng and Dr.Xinxiu Yang for their helps in im-munization and ELISA.This work was funded bythe National Natural Sciences Foundation of China,No.39893320,the"973"Basic Research FundingScheme of China(G 199905590
文摘According to the traditional immunization procedure, after the first injection of the sample A (emulsion of aimed antigen and Freund's complete adjuvant) to immunize rabbit, successive injections of the sample B (emulsion of aimed antigen and Freund's incomplete adjuvant) were followed every 2-4 weeks. In general,high titer of the corresponding polyclonal antisera will be observed after 4-5 injections of sample B in 3-4months. This report presents a simply modified procedure that was able to stimulate the antisera formation in one month and achieve enough avidity to satisfy either Western blot or immunohistochemistry analysis.It just applied an additional injection of the sample A to the rabbit at the 3rd day after the primary immunization injection. You could gain the high titer of the antisera right after the first sample B injection in one month. This method has produced the desired results in three different recombinant antigens with different molecular weight (5.9 KD-55 KD) expressed from prokaryotic or eukaryotic cells.
文摘AIM: To study the effect of cholecystokinin-octapeptide (CCK-8) on systemic hypotension and cytokine production in lipopolysaccharide (LPS)-induced endotoxic shock (ES) rats. METHODS: The changes of blood pressure were observed using physiological record instrument in four groups of rats: LPS (8mg.kg(-1),iv) induced ES; CCK-8 (40 microg.kg(-1), iv) pretreatment 10 min before LPS (8mg.kg(-1)); CCK-8 (40 micro.kg(-1), iv) or normal saline (control) groups. Differences in tissue and circulating specificity of the proinflammatory cytokines (TNF-alpha, IL-1beta and IL-6) were assayed with ELISA kits. RESULTS: CCK-8 reversed LPS-induced decrease of mean artery blood pressure (MABP) in rats. Compared with control, LPS elevated the serum level of IL-6 significantly (3567 +/- 687 ng.L(-1) vs 128 +/- 22 ng.L(-1), P【0.01), while contents of TNF-alpha and IL-1beta elevated significantly (277 +/- 86 ng.L(-1) vs not detectable and 43 +/- 9 ng.L(-1) vsnot detectable, P【0.01) but less extent than IL-6. CCK-8 significantly inhibited the LPS-induced increase in serum TNF-alpha IL-1beta and IL-6. LPS elevated spleen and lung content of IL-1beta significantly (5184 +/- 85 ng.L(-1) vs 1047 +/- 21 ng.L(-1) and 4050 +/- 614 ng.L(-1) vs not detectable, P【0.01), while levels of TNF-alpha and IL-6 also rose significantly but in less extent than IL-1beta. CCK-8 inhibited the LPS-induced increase of the cytokines in spleen and lung. In the heart, CCK-8 significantly inhibited LPS-induced increase of TNF-alpha (864 +/- 123 ng.L(-1) in CCK-8+LPS group vs 1599 +/- 227 ng.L(-1) in LPS group, P 【 0.01), and IL-1beta (282 +/- 93 ng.L(-1) in CCK-8+LPS group vs 621 +/- 145ng.L(-1) in LPS group, P 【 0.01). CONCLUSION: CCK-8 reverses ES, which may be related to its inhibitory effect on the overproduction of cytokines.
基金This research was supported in part by grants from the National Natural Sciences Foundation of China(40162002,40372023,40232020)from the Foundation of the Key and Basic Project of Science and Technology of Guizhou(Gui No.2002-309)+1 种基金from the Early and Special Projects of the Key and Basic Projects of the Ministry of Technology and Science of China(2002 CCC 02600)to Zhaofrom the U S.National Science Foundation(0106883,0229757)to Babcock.
文摘A Burgess Shale-type biota is, in part, characterized by a wide diversity of taxa and soft-part preservation. Each provides unique historical insights into early metazoan evolution. Among the more than 40 globally distributed biotas, the early Cambrian Chengjiang and Middle Cambrian Burgess-type biotas are the largest. The Kaili Biota, from the earliest Middle Cambrian of Guizhou, China, contains representatives of 110 metazoan genera belonging to 10 phyla. It contains many well-persevered soft-bodied specimens. This Chinese biota has become the third most taxonomically diverse Burgess Shale-type fauna. Because the Kaili Biota formed in an outer-shelf environment, its main faunal character is large numbers of eocrinoids and planktoic trilobites. The Kaili is younger than the Chengjiang Biota but older than the Canadian Burgess Shale Biota; it shares 30 genera with the Chengjiang and 38 genera with the Burgess Biota. The Kaili Biota displays a taphonomic window to the diversification and evolution of marine offshore organisms covering 5.13 million years between the Early and Middle Cambrian.
文摘The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.
文摘DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4^+- N and NO3^--N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carded out. The results showed that DP enhanced the mean NH4^+-N concentrations by 19.1%-24.3%, but reduced the mean NO3^--N concentrations by 44.9%-56.6% in the leachate, under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%-30.9%, 14.9%-43.5%, and 14.7%-31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP. It is proposed that DMPP has the potential to either reduce NO3^--N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.
基金supported by the National Transgenic Plant Special Fundsupported by the National Special Project of Transgenic Organisms(2008ZX8012-002)
文摘As the worldwide commercialization of genetically modified organisms (GMOs) increases and consumers concern the safety of GMOs, many countries and regions are issuing labeling regulations on GMOs and their products. Analytical methods and their standardization for GM ingredients in foods and feed are essential for the implementation of labeling regulations. To date, the GMO testing methods are mainly based on the inserted DNA sequences and newly produced proteins in GMOs. This paper presents an overview of GMO testing methods as well as their standardization.
基金supported by the Environment and Water Industry Development Scheme of Singapore-The Process Control and Enhanced Biological Nutrient Removal of CSBR Process (No. EDB S07/1-53974082)the National Key Technologies R&D Program of China during the Eleventh Five-year Plan Period (No. 2006BAC19B03)+1 种基金the Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education Commission (No. PXM2008-014204-050843)the Funding Project by Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (No. PHR20090502)
文摘A bench-scale cyclic activated sludge technology (CAST) was operated to study the biological phosphorus removal performance and a series of batch tests was carried out to demonstrate the accumulation of denitrifying polyphosphate-accumulating organisms (DNPAOs) in CAST system. Under all operating conditions, step-feed CAST with enough carbon sources in influent had the highest nitrogen and phosphorus removal efficiency as well as good sludge settling performance. The average removal rate of COD, NH4^+-N, PO4^3--P and total nitrogen (TN) was 88.2%, 98.7%, 97.5% and 92.1%, respectively. The average sludge volume index (SVI) was 133 mL/g. The optimum anaerobic/aerobic/anoxic (AOA) conditions for the cultivation of DNPAOs could be achieved by alternating anoxic/oxic operational strategy, thus a significant denitrifying phosphorus removal occurred in step-feed CAST. The denitrification of NO^x--N completed quickly due to step-feed operation and enough carbon sources, which could enhance phosphorus release and further phosphorus uptake capability of the system. Batch tests also proved that polyphosphate-accumulating organisms (PAOs) in the step-feed process had strong denitrifying phosphorus removal capacity. Both nitrate and nitrite could be used as electron acceptors in denitrifying phosphorus removal. Low COD supply with step-feed operation strategy would favor DNPAOs accumulation.
基金the Chinese postdoctoral fund Natural Science fund of Shandong province No 93E0157 and State Major Besearch project (PD-B6-7-2)
文摘Study on the coagulation of four species of red tide organisms (Nitzschia pungens, Skeletonema costatum, Prorocentrum minimum and Noctiluca scintillans) with montmorillonite, and the effect of montmorillonite pretreatment on the coagulation shows that the capability for montmorillonite to coagulate with them is in the order: N. pungens > S. costatum > P. minimum > N. scintillans. The coagulation is discussed from the aspects of the structure, shape, size, movement, habit, etc. of different species and the results are explained theoretically. The experimental results also indicate that the treatment of montmorillonite with acid can enhance its coagulating capability. This is due to the fact that A1(OH2)6+3, exchanged from the clay lattice by hydrogen ion H+, forms hydroxy-aluminum polymers on the surface of the montmorillonite. The hydroxy-aluminum polymers positively charge and increase the positive characteristic of the clay surface, and also serves as a bridge between adjacent surfaces of particles. These two functions enhance the montmorillonite's capability for coagulating with the organism cells.
文摘Patients with liver cirrhosis are susceptible to infections due to various mechanisms, including abnormalities of humoral and cell-mediated immunity and occurrence of bacterial translocation from the intestine. Bacterial infections are common and represent a reason for progression to liver failure and increased mortality. Fungal infections, mainly caused by Candida spp., are often associated to delayed diagnosis and high mortality rates. High level of suspicion along with prompt diagnosis and treatment of infections are warranted. Bacterial and fungal infections negatively affect the outcomes of liver transplant candidates and recipients, causing disease progression among patients on the waiting list and increasing mortality, especially in the early posttransplant period. Abdominal, biliary tract, and bloodstream infections caused by Gram-negative bacteria [e.g., Enterobacteriaceae and Pseudomonas aeruginosa(P. aeruginosa)] and Staphylococcus spp. are commonly encountered in liver transplant recipients. Due to frequent exposure to broad-spectrum antibiotics, invasive procedures, and prolonged hospitalizations, these patients are especially at risk of developing infections caused by multidrug resistant bacteria. The increase in antimicrobial resistance hampers the choice of an adequate empiric therapy and warrants the knowledge of the local microbial epidemiology and the implementation of infection control measures. The main characteristics and the management of bacterial and fungal infections in patients with liver cirrhosis and liver transplant recipients are presented.
基金supported by the National Natural Science Foundation of China (No. 50508011).
文摘Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) protocol was employed for revealing microbial community structure and succession in a sequential anaerobic and aerobic reactor performing enhanced biological phosphorus removal (EBPR) during start-up period. High phosphorus removal was achieved after 15 d. On day 30, phosphorus removal efficiency reached to 83.2% and the start-up was finished. DGGE profiles of periodical sludge samples showed that dominant microbial species were 19 OTUs (operational taxonomy units). Unweighted pair-group method using arithmetic averages (UPGMA) clustering analysis revealed that rapid community succession correlated to low phosphorus removal rate and high phosphorus removal efficiency reflected on steady community structure. Sequencing results indicated that determined sequences (12 OTUs) belonged to Proteobacterium, Actinobacteria, Gemmatimonadales and unaffiliate group. Proteobacterium, Tetrasphaera elongate and Gemmatimonas aurantiaca may act important roles in phosphorus removal. With little amount as known glycogen accumulating organisms, Candidatus Competibacter phosphatis still at accumulating-phase had limited effect on microbial community structure. When climax community was obtained, dominant microbes were 14 OTUs. Microbes in a large amount were uncultured bacterium Thauera sp., uncultured y-Proteobacterium and Tetrasphaera elongata.
文摘Surface modification of montmorillonite by means of Mg<sup>2+</sup> insertion reaction has been studied and a positively charged montmorillonite has been prepared. The effects of preparation temperature and Mg<sup>2+</sup> concentration on the positive charge property of the clay and on the clay coagulating Heterosigma akashiwo have been studied. The results showed that the modified clay enhanced the coagulation and the used amount decreased to 1/5—1/10 of the original. The removal rates of Heterosigma akashiwo were correlated positively with positive charge on the clay in accordance with theoretical model.
文摘A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.
基金National Basic Research Program of China (No. 2001CB109001)National High-Tech Research Program of China (No. 2002AA212041)
文摘Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.