期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于集成学习的标题分类算法研究
被引量:
10
1
作者
高元
刘柏嵩
《计算机应用研究》
CSCD
北大核心
2017年第4期1004-1007,共4页
标题分类是对一个标题性语句进行分类,通常这个标题是不超过20个字的短文本,内容精炼且概括性强。针对标题文本的特征稀疏性和含义不确定性,提出了一种融合随机森林与贝叶斯多项式的标题分类算法。该算法将贝叶斯多项式模型引入到随机...
标题分类是对一个标题性语句进行分类,通常这个标题是不超过20个字的短文本,内容精炼且概括性强。针对标题文本的特征稀疏性和含义不确定性,提出了一种融合随机森林与贝叶斯多项式的标题分类算法。该算法将贝叶斯多项式模型引入到随机森林底层分类器构建过程中,同时利用随机森林附带的OOB数据提出了一种基于二维权重分布的投票机制。最后在图书馆真实书目数据上进行实验,针对分类性能与当前基于LDA主题扩展的SVM算法进行对比,实验结果表明在一定条件下,该方法性能稳定、表现较佳。
展开更多
关键词
自然语言处理
标题分类
集成学习
改进随机森林
oob
二
维权
重
分布
下载PDF
职称材料
题名
基于集成学习的标题分类算法研究
被引量:
10
1
作者
高元
刘柏嵩
机构
宁波大学信息科学与工程学院
出处
《计算机应用研究》
CSCD
北大核心
2017年第4期1004-1007,共4页
基金
国家社会科学基金资助项目(15FTQ002)
文摘
标题分类是对一个标题性语句进行分类,通常这个标题是不超过20个字的短文本,内容精炼且概括性强。针对标题文本的特征稀疏性和含义不确定性,提出了一种融合随机森林与贝叶斯多项式的标题分类算法。该算法将贝叶斯多项式模型引入到随机森林底层分类器构建过程中,同时利用随机森林附带的OOB数据提出了一种基于二维权重分布的投票机制。最后在图书馆真实书目数据上进行实验,针对分类性能与当前基于LDA主题扩展的SVM算法进行对比,实验结果表明在一定条件下,该方法性能稳定、表现较佳。
关键词
自然语言处理
标题分类
集成学习
改进随机森林
oob
二
维权
重
分布
Keywords
natural language processing
headlines classification
ensemble learning
improved random forest
oob
two-dimensional weight distribution
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于集成学习的标题分类算法研究
高元
刘柏嵩
《计算机应用研究》
CSCD
北大核心
2017
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部