Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distor...Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired.In this paper,a compact Ultra-Wideband(UWB)V-shaped monopole antenna is presented.UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape.The proposed V-shaped is designed by incorporating a rectangle,and an inverted isosceles triangle using FR4 substrate.The size of the antenna is 25 mm×26 mm×1.6 mm.The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial,Scientific,and Medical(ISM),Worldwide Interoperability for Microwave Access(WiMAX),(IEEE 802.11/HIPERLAN band,5G sub 6 GHz)which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission(FCC)with a maximum gain of 3.83 dB.The antenna is designed in Ansys HFSS.Results for key performance parameters of the antenna are presented.The measured results are in good agreement with the simulated results.Due to flat gain,uniform group delay,omni directional radiation pattern characteristics and well-matched impedance,the proposed antenna is suitable for WiMAX,ISM and heterogeneous wireless systems.展开更多
Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and ...Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(Do Fs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and pr展开更多
Considering the shortcomings of the existing vehicle-to-vehicle(V2V) communication antennas, this paper proposes a regular hexagon broadband microstrip antenna. By loading shorting pins and etching V-shape slots wit...Considering the shortcomings of the existing vehicle-to-vehicle(V2V) communication antennas, this paper proposes a regular hexagon broadband microstrip antenna. By loading shorting pins and etching V-shape slots with different size at each angle of the regular hexagon patch, it realizes impedance matching and obtains better impedance bandwidth. The simulated results show that the relative bandwidth of this antenna reaches 35.55%, covers the frequency band of 4.74 GHz to 6.79 GHz. The antenna acquires an omni-directional radiation pattern in the horizontal plane whose out of roundness is less than 0.5 d B. In addition, the antenna is manufactured and tested, whose tested results are basically consistent with simulated results. Because the height of antenna is 3 mm, it is easy to be hidden on roof of a vehicle for V2 V communication.展开更多
仿人机器人的全方位步行参数对其行走稳定性、灵活性、快速性具有较大影响,然而物理机器人与描述其前后步幅连接约束的简化动力学模型间的数学关系却难于建立,因而难于获得优化目标表达式和相应的优化方法.本文从步幅跟随规划算法中提取...仿人机器人的全方位步行参数对其行走稳定性、灵活性、快速性具有较大影响,然而物理机器人与描述其前后步幅连接约束的简化动力学模型间的数学关系却难于建立,因而难于获得优化目标表达式和相应的优化方法.本文从步幅跟随规划算法中提取出7个关键影响参数,并将标准实验工况下的步幅跟随性能指定为优化目标,从而将问题转化为一个黑盒优化过程.基于动力学仿真建立Kriging代理模型,通过Latin超立方初始实验和EGO(effective global optimization)迭代建模优化求解该问题.动力学仿真结果表明,在较少的实验代价下,该方法实现了全方位步行参数的优化,该方法能够实现步行速度和步幅跟随能力的综合提升.展开更多
基金This work was supported by the Research Program through the National Research Foundation of Korea,NRF-2019R1A2C1005920,S.K.
文摘Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired.In this paper,a compact Ultra-Wideband(UWB)V-shaped monopole antenna is presented.UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape.The proposed V-shaped is designed by incorporating a rectangle,and an inverted isosceles triangle using FR4 substrate.The size of the antenna is 25 mm×26 mm×1.6 mm.The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial,Scientific,and Medical(ISM),Worldwide Interoperability for Microwave Access(WiMAX),(IEEE 802.11/HIPERLAN band,5G sub 6 GHz)which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission(FCC)with a maximum gain of 3.83 dB.The antenna is designed in Ansys HFSS.Results for key performance parameters of the antenna are presented.The measured results are in good agreement with the simulated results.Due to flat gain,uniform group delay,omni directional radiation pattern characteristics and well-matched impedance,the proposed antenna is suitable for WiMAX,ISM and heterogeneous wireless systems.
基金Supported by National Natural Science Foundation of China(Grant No.51175030)Fundamental Research Funds for the Central Universities,China(Grant No.2012JBZ002)+1 种基金Research Fund for the Doctoral Program of Higher Education(Grant No.20130009110030)Major Project of Ministry of Education of China(Grant No.625010403)
文摘Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(Do Fs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and pr
基金supported by the Science and Technology Research Project of Chongqing Municipal Education Commission(KJ1400417,KJ130531)
文摘Considering the shortcomings of the existing vehicle-to-vehicle(V2V) communication antennas, this paper proposes a regular hexagon broadband microstrip antenna. By loading shorting pins and etching V-shape slots with different size at each angle of the regular hexagon patch, it realizes impedance matching and obtains better impedance bandwidth. The simulated results show that the relative bandwidth of this antenna reaches 35.55%, covers the frequency band of 4.74 GHz to 6.79 GHz. The antenna acquires an omni-directional radiation pattern in the horizontal plane whose out of roundness is less than 0.5 d B. In addition, the antenna is manufactured and tested, whose tested results are basically consistent with simulated results. Because the height of antenna is 3 mm, it is easy to be hidden on roof of a vehicle for V2 V communication.
文摘仿人机器人的全方位步行参数对其行走稳定性、灵活性、快速性具有较大影响,然而物理机器人与描述其前后步幅连接约束的简化动力学模型间的数学关系却难于建立,因而难于获得优化目标表达式和相应的优化方法.本文从步幅跟随规划算法中提取出7个关键影响参数,并将标准实验工况下的步幅跟随性能指定为优化目标,从而将问题转化为一个黑盒优化过程.基于动力学仿真建立Kriging代理模型,通过Latin超立方初始实验和EGO(effective global optimization)迭代建模优化求解该问题.动力学仿真结果表明,在较少的实验代价下,该方法实现了全方位步行参数的优化,该方法能够实现步行速度和步幅跟随能力的综合提升.