期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于优化PSO-BP算法的轨道交通短期OD客流预测研究
1
作者
宋丽梅
《杨凌职业技术学院学报》
2024年第2期21-23,59,共4页
城市交通系统要实现更好的管理,需对城市轨道交通进站客流进行准确预测,为达到提高轨道交通运输效率、改善运营服务质量的目的,构建了以反向传播(BP)神经网络对地铁客流进行预测;利用PSO,对BP神经网络进行进一步优化,形成对应的客流预...
城市交通系统要实现更好的管理,需对城市轨道交通进站客流进行准确预测,为达到提高轨道交通运输效率、改善运营服务质量的目的,构建了以反向传播(BP)神经网络对地铁客流进行预测;利用PSO,对BP神经网络进行进一步优化,形成对应的客流预测系统。以地铁数据为基础,对车站OD客流量时空相关性进行定性分析,利用回归分析法对影响客流的因素进行定量分析,筛选出天气、节假日、运营时刻3个时间特征。为提高预测精度,构建不同时间段下的BP神经网络模型,优化了PSO-BP神经网络模型的预测误差,形成了基于PSO-BP神经网络的轨道交通短期OD客流量预测模型,加入时间特征的短期OD客流量预测模型,其换乘站优化后神经网络模型预测值M1平均下降了48.2%,M2下降了37.6%,M3下降了21.9%,该方法和模型为轨道交通运营部门制定列车运行计划提供更准确数据资料。
展开更多
关键词
城市轨道交通
BP神经网络
粒子群优化算法
回归分析法
od
客流量
预测模型
下载PDF
职称材料
题名
基于优化PSO-BP算法的轨道交通短期OD客流预测研究
1
作者
宋丽梅
机构
杨凌职业技术学院
出处
《杨凌职业技术学院学报》
2024年第2期21-23,59,共4页
基金
杨凌职业技术学院2021年院内基金项目“城市轨道交通网络高峰客流拥挤管控研究”研究成果(ZK21-38)。
文摘
城市交通系统要实现更好的管理,需对城市轨道交通进站客流进行准确预测,为达到提高轨道交通运输效率、改善运营服务质量的目的,构建了以反向传播(BP)神经网络对地铁客流进行预测;利用PSO,对BP神经网络进行进一步优化,形成对应的客流预测系统。以地铁数据为基础,对车站OD客流量时空相关性进行定性分析,利用回归分析法对影响客流的因素进行定量分析,筛选出天气、节假日、运营时刻3个时间特征。为提高预测精度,构建不同时间段下的BP神经网络模型,优化了PSO-BP神经网络模型的预测误差,形成了基于PSO-BP神经网络的轨道交通短期OD客流量预测模型,加入时间特征的短期OD客流量预测模型,其换乘站优化后神经网络模型预测值M1平均下降了48.2%,M2下降了37.6%,M3下降了21.9%,该方法和模型为轨道交通运营部门制定列车运行计划提供更准确数据资料。
关键词
城市轨道交通
BP神经网络
粒子群优化算法
回归分析法
od
客流量
预测模型
Keywords
urban rail transit
BP neural network
particle swarm optimization algorithm
regression analysis meth
od
od
passenger flow prediction m
od
el
分类号
U293.13 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于优化PSO-BP算法的轨道交通短期OD客流预测研究
宋丽梅
《杨凌职业技术学院学报》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部