针对传统手持式汽车故障诊断设备的不足,为了能够在线监测和诊断汽车故障,将蓝牙(Blue tooth)、CAN(Controller Area Network)总线、智能手机三者结合在一起,构建基于蓝牙技术的汽车无线故障诊断系统。该系统能满足对汽车诊断技术的实...针对传统手持式汽车故障诊断设备的不足,为了能够在线监测和诊断汽车故障,将蓝牙(Blue tooth)、CAN(Controller Area Network)总线、智能手机三者结合在一起,构建基于蓝牙技术的汽车无线故障诊断系统。该系统能满足对汽车诊断技术的实时性和移动性的需求,实现对汽车发动机OBD-II的无线故障诊断。本文详细地描述了构建的技术方案、系统结构、通信协议和软硬件实现电路。展开更多
Fleet Management System (FMS) is a highly applicable system which gets more and more attention among industrial field. Recent years, fuel consumption has become one of the most concerned topics, hence, establishment o...Fleet Management System (FMS) is a highly applicable system which gets more and more attention among industrial field. Recent years, fuel consumption has become one of the most concerned topics, hence, establishment of a fuel consumption monitoring system is required. In this study, based-on the FMS, a system which was capable of precisely monitoring and calculating the fuel consumption was designed. This FMS was composed of the front end Vehicle Tracking System (VTS) and the back end Management Server (MS). VTS was established and installed into the vehicles, based on several well-known technologies, such as Mobile Telecommunications Technology of GPRS or 3G, Global Positioning System (GPS), and On-Board Diagnostics II (OBD-II). In addition, VTS was also connected with the Vehicle Electronic Control Unit (VECU) through the OBD-II interface. By using GPRS/3G technology and the TCP/IP communication protocol, real-time vehicle operation data obtained from the OBD-II and positioning information from the GPS could be sent backward to the MS. The MS was designed through JBoss Developer Studio, and included the Data Collector (DC) and Web server. The DC gathers data sent back from VTS and the Web server calculates and decides the vehicle's present situation according to the data. The result can also be presented on websites by the Web server. In this study, the fuel consumption status of vehicles could be performed. Furthermore, the Web service also provided the users instant online manipulation.展开更多
文摘针对传统手持式汽车故障诊断设备的不足,为了能够在线监测和诊断汽车故障,将蓝牙(Blue tooth)、CAN(Controller Area Network)总线、智能手机三者结合在一起,构建基于蓝牙技术的汽车无线故障诊断系统。该系统能满足对汽车诊断技术的实时性和移动性的需求,实现对汽车发动机OBD-II的无线故障诊断。本文详细地描述了构建的技术方案、系统结构、通信协议和软硬件实现电路。
文摘Fleet Management System (FMS) is a highly applicable system which gets more and more attention among industrial field. Recent years, fuel consumption has become one of the most concerned topics, hence, establishment of a fuel consumption monitoring system is required. In this study, based-on the FMS, a system which was capable of precisely monitoring and calculating the fuel consumption was designed. This FMS was composed of the front end Vehicle Tracking System (VTS) and the back end Management Server (MS). VTS was established and installed into the vehicles, based on several well-known technologies, such as Mobile Telecommunications Technology of GPRS or 3G, Global Positioning System (GPS), and On-Board Diagnostics II (OBD-II). In addition, VTS was also connected with the Vehicle Electronic Control Unit (VECU) through the OBD-II interface. By using GPRS/3G technology and the TCP/IP communication protocol, real-time vehicle operation data obtained from the OBD-II and positioning information from the GPS could be sent backward to the MS. The MS was designed through JBoss Developer Studio, and included the Data Collector (DC) and Web server. The DC gathers data sent back from VTS and the Web server calculates and decides the vehicle's present situation according to the data. The result can also be presented on websites by the Web server. In this study, the fuel consumption status of vehicles could be performed. Furthermore, the Web service also provided the users instant online manipulation.