By making use of the developments in the fields of numerical methods, computational technology and fluid dynamics models, computational fluid dynamics (CFD) progress forward to play an active role today in various ind...By making use of the developments in the fields of numerical methods, computational technology and fluid dynamics models, computational fluid dynamics (CFD) progress forward to play an active role today in various industrial, academic and research activities. In many cases, CFD simulations replace expensive and time consuming laboratory experiments successfully by allowing engineers and scientists to capture pressure, velocity and force distributions. Researchers are now able to test various theoretical conditions unavailable in the laboratory and CFD studies help them to get deeper insights on existing theories. The century-old history started just to solve some stress analysis problems numerically and today CFD methodology is being applied not only in fluid dynamics also in chemical engineering, mineral processing, fire engineering, sports, medical imaging and even in acoustics. This paper reviews the growth of CFD as a discipline and discusses its contemporary methodology.展开更多
A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing th...A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of finding the optimal solutions are proved.展开更多
文摘By making use of the developments in the fields of numerical methods, computational technology and fluid dynamics models, computational fluid dynamics (CFD) progress forward to play an active role today in various industrial, academic and research activities. In many cases, CFD simulations replace expensive and time consuming laboratory experiments successfully by allowing engineers and scientists to capture pressure, velocity and force distributions. Researchers are now able to test various theoretical conditions unavailable in the laboratory and CFD studies help them to get deeper insights on existing theories. The century-old history started just to solve some stress analysis problems numerically and today CFD methodology is being applied not only in fluid dynamics also in chemical engineering, mineral processing, fire engineering, sports, medical imaging and even in acoustics. This paper reviews the growth of CFD as a discipline and discusses its contemporary methodology.
文摘A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of finding the optimal solutions are proved.