Many investigations have revealed that transition of melt structure can effectively influence the final solidification microstructures. In this study, ultrasonic treatment was applied to AI-20%Si melt and Sr-modified ...Many investigations have revealed that transition of melt structure can effectively influence the final solidification microstructures. In this study, ultrasonic treatment was applied to AI-20%Si melt and Sr-modified AI-20%Si melt at 720 ℃ (i.e. above liquidus of about 690℃) for 60 s, and then the melt was quickly quenched to room temperature. Experimental results show that ultrasonic treatment can refine the primary Si phase and a-AI of AI-20%Si alloy; strontium can make the morphology of Si phase spheroidized and refined as Sr addition changes the faceted growth characteristic of Si phase; however, the refinement effect of ultrasonic treatment on the primary Si phase and α-AI is weakened by Sr addition.展开更多
基金financially supported by the National Natural Science Foundation of China under contract No.50874022
文摘Many investigations have revealed that transition of melt structure can effectively influence the final solidification microstructures. In this study, ultrasonic treatment was applied to AI-20%Si melt and Sr-modified AI-20%Si melt at 720 ℃ (i.e. above liquidus of about 690℃) for 60 s, and then the melt was quickly quenched to room temperature. Experimental results show that ultrasonic treatment can refine the primary Si phase and a-AI of AI-20%Si alloy; strontium can make the morphology of Si phase spheroidized and refined as Sr addition changes the faceted growth characteristic of Si phase; however, the refinement effect of ultrasonic treatment on the primary Si phase and α-AI is weakened by Sr addition.