During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual...During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.展开更多
Mechanisms on cancer cell migration and invasion have been major topics of cancer research and anti-cancer therapy development. Among the multiple cell signaling pathways involved in cell migration, those elicited by ...Mechanisms on cancer cell migration and invasion have been major topics of cancer research and anti-cancer therapy development. Among the multiple cell signaling pathways involved in cell migration, those elicited by transforming growth factorβ(TGF-β) have attracted tremendous attention. The TGF-βpolypeptide cytokines include four isoforms:TGF-β1, TGF-β2, TGF-β3, and TGF-β4, which are secreted mainly from cells of white blood cell lineage, such as macrophages, T cells and platelets.展开更多
The tumor suppressor p53 protein is either lost or mutated in about half of all human cancers.Loss of p53 function is well known to influence cell spreading,migration and invasion.While expression of mutant p53 is not...The tumor suppressor p53 protein is either lost or mutated in about half of all human cancers.Loss of p53 function is well known to influence cell spreading,migration and invasion.While expression of mutant p53 is not equivalent to p53 loss,mutant p53 can acquire new functions to drive cell spreading and migration via different mechanisms.In our study,we found that mutant p53 significantly increased cell spreading and migration when comparing with p53-null cells.RNA-Seq analysis suggested that Rho GTPase activating protein 44(ARHGAP44) is a new target of mutant p53,which suppressed AKHGAP44 transcription.ARHGAP44 has GAP activity and catalyze GTP hydrolysis on Cdc42.Higher level of GTP-Cdc42 was correlated with increase expression of mutant p53 and reduced ARHGAP44.Importantly,wt-ARHGAP44 but not mutant ARHGAP44(R291A) suppressed mutant p53 mediated cell spreading and migration.Bioinformatics analysis indicated lower expression of ARHGAP44 in lung carcinoma compared with normal tissues,which was verified by RT-qPCR using specimens from patients.More interestingly,ARHGAP44 mRNA level was lower in tumors with mutant p53 than those with normal p53.Collectively,our results disclose a new mechanism by which mutant p53 stimulates cell spreading and migration.展开更多
Novel coronavirus pneumonia(COVID-19)is rampant in many countries and regions and there is no time to delay the exploration of the scheme for its prevention and control.The pathogenic characteristics of novel coronavi...Novel coronavirus pneumonia(COVID-19)is rampant in many countries and regions and there is no time to delay the exploration of the scheme for its prevention and control.The pathogenic characteristics of novel coronavirus and the effect of moxibustion for warming up yang and strengthening the antipathogenic qi were analyzed in this paper.From the perspective of modern medical mechanism,during the prevention and treatment of novel coronaviral infection,moxibustion may be able to prevent and treat COVID-19 by improving the body’s immunity so as to conquer virus,by anti-inflammation to alleviate the inflammatory response of COVID-19 and by improving lung function to inhibit pulmonary fibrosis.展开更多
基金Projects(50275150,61173052)supported by the National Natural Science Foundation of China
文摘During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.
文摘Mechanisms on cancer cell migration and invasion have been major topics of cancer research and anti-cancer therapy development. Among the multiple cell signaling pathways involved in cell migration, those elicited by transforming growth factorβ(TGF-β) have attracted tremendous attention. The TGF-βpolypeptide cytokines include four isoforms:TGF-β1, TGF-β2, TGF-β3, and TGF-β4, which are secreted mainly from cells of white blood cell lineage, such as macrophages, T cells and platelets.
基金supported by the National Program on Key Basic Research Project(2015CB901402)the National Natural Science Foundation of China(91629103,31670882, 81471066,81261120555,81672883,81401837,31071875,31200878, 31100946)+1 种基金the Science and Technology Commission of Shanghai Municipality(14430712100,11ZR1410000,16ZR1410000,16QA1401500)the Applied Basic Research Program of Science and Technology Department of Sichuan Province(2015JY0038)
文摘The tumor suppressor p53 protein is either lost or mutated in about half of all human cancers.Loss of p53 function is well known to influence cell spreading,migration and invasion.While expression of mutant p53 is not equivalent to p53 loss,mutant p53 can acquire new functions to drive cell spreading and migration via different mechanisms.In our study,we found that mutant p53 significantly increased cell spreading and migration when comparing with p53-null cells.RNA-Seq analysis suggested that Rho GTPase activating protein 44(ARHGAP44) is a new target of mutant p53,which suppressed AKHGAP44 transcription.ARHGAP44 has GAP activity and catalyze GTP hydrolysis on Cdc42.Higher level of GTP-Cdc42 was correlated with increase expression of mutant p53 and reduced ARHGAP44.Importantly,wt-ARHGAP44 but not mutant ARHGAP44(R291A) suppressed mutant p53 mediated cell spreading and migration.Bioinformatics analysis indicated lower expression of ARHGAP44 in lung carcinoma compared with normal tissues,which was verified by RT-qPCR using specimens from patients.More interestingly,ARHGAP44 mRNA level was lower in tumors with mutant p53 than those with normal p53.Collectively,our results disclose a new mechanism by which mutant p53 stimulates cell spreading and migration.
基金Supported by National Natural Science Foundation:81473773,81603542。
文摘Novel coronavirus pneumonia(COVID-19)is rampant in many countries and regions and there is no time to delay the exploration of the scheme for its prevention and control.The pathogenic characteristics of novel coronavirus and the effect of moxibustion for warming up yang and strengthening the antipathogenic qi were analyzed in this paper.From the perspective of modern medical mechanism,during the prevention and treatment of novel coronaviral infection,moxibustion may be able to prevent and treat COVID-19 by improving the body’s immunity so as to conquer virus,by anti-inflammation to alleviate the inflammatory response of COVID-19 and by improving lung function to inhibit pulmonary fibrosis.