The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet ...The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.展开更多
The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T cond...The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the ve展开更多
【目的】海洋沉积物中的古菌在全球生物地球化学循环中充当重要的角色,深入了解沉积物中古菌群落的结构及功能特征是探究海洋沉积物中古菌参与生物地球化学循环和生态学功能的基础。【方法】采用高通量测序技术,分别对南海北部陆坡不同...【目的】海洋沉积物中的古菌在全球生物地球化学循环中充当重要的角色,深入了解沉积物中古菌群落的结构及功能特征是探究海洋沉积物中古菌参与生物地球化学循环和生态学功能的基础。【方法】采用高通量测序技术,分别对南海北部陆坡不同海域(东部,西部和神狐海域的7个站位)沉积物中古菌16SrRNA基因进行Illumina Mi Seq测序。【结果】中国南海北部陆坡沉积物中古菌的主要门类是Bathyarchaeota、Thermoplasmata、Woesearchaeota(DHVEG-6)、Thaumarchaeota(Marine Group I)、Lokiarchaeota和Marine Hydrothermal Vent Group(MHVG),还存在少量的AK8、Marine Benthic Group A和Terrestrial Hot Spring Crenarchaeota Group(THSCG)等。在潜在水合物区沉积物中还发现了甲烷代谢相关古菌(Anaerobic methanotrophic archaea,ANME)类群,主要为ANME-1、ANME-2ab和ANME-2c等。甲烷代谢古菌的分布特征也从甲烷代谢保守功能基因mcr A(Methyl coenzyme-Mreductase A)的扩增中得到了验证。利用定量PCR对南海沉积物中的细菌、古菌的16SrRNA基因和mcrA基因进行了定量,发现细菌16SrRNA基因拷贝数为10~5-10~7 copies/g(湿重),古菌16SrRNA基因拷贝数为10~5-10~6 copies/g(湿重),潜在水合物区mcrA基因拷贝数为10~3-10~5 copies/g(湿重)。【结论】揭示了中国南海北部陆坡沉积物中具有丰富的微生物资源,其中古菌种类多样且丰度较高,同时发现冷泉特征古菌群落,为深入认识和理解南海沉积物中微生物丰度和古菌多样性,以及解析古菌地球化学功能奠定基础。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41501079 and 91647103)Funded by State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-43)+1 种基金the Chinese Academy of Sciences(CAS)Key Research Program(Grant No.KZZD-EW-13)the Foundation for Excellent Youth Scholars of NIEER,CAS
文摘The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.
基金supported by the National Natural Science Foundation of China (grants No.41576048,41202080 and 41176052)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) (grant No.PLC201402)+1 种基金the Youth Innovation Promotion Association CAS (2016312)the Scientific Cooperative Project by CNPC and CAS (2015A-4813)
文摘The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the ve
文摘【目的】海洋沉积物中的古菌在全球生物地球化学循环中充当重要的角色,深入了解沉积物中古菌群落的结构及功能特征是探究海洋沉积物中古菌参与生物地球化学循环和生态学功能的基础。【方法】采用高通量测序技术,分别对南海北部陆坡不同海域(东部,西部和神狐海域的7个站位)沉积物中古菌16SrRNA基因进行Illumina Mi Seq测序。【结果】中国南海北部陆坡沉积物中古菌的主要门类是Bathyarchaeota、Thermoplasmata、Woesearchaeota(DHVEG-6)、Thaumarchaeota(Marine Group I)、Lokiarchaeota和Marine Hydrothermal Vent Group(MHVG),还存在少量的AK8、Marine Benthic Group A和Terrestrial Hot Spring Crenarchaeota Group(THSCG)等。在潜在水合物区沉积物中还发现了甲烷代谢相关古菌(Anaerobic methanotrophic archaea,ANME)类群,主要为ANME-1、ANME-2ab和ANME-2c等。甲烷代谢古菌的分布特征也从甲烷代谢保守功能基因mcr A(Methyl coenzyme-Mreductase A)的扩增中得到了验证。利用定量PCR对南海沉积物中的细菌、古菌的16SrRNA基因和mcrA基因进行了定量,发现细菌16SrRNA基因拷贝数为10~5-10~7 copies/g(湿重),古菌16SrRNA基因拷贝数为10~5-10~6 copies/g(湿重),潜在水合物区mcrA基因拷贝数为10~3-10~5 copies/g(湿重)。【结论】揭示了中国南海北部陆坡沉积物中具有丰富的微生物资源,其中古菌种类多样且丰度较高,同时发现冷泉特征古菌群落,为深入认识和理解南海沉积物中微生物丰度和古菌多样性,以及解析古菌地球化学功能奠定基础。