Quaternary buried ancient river channels are widespread in the shallow-level sediments of the northern shelf of the South China Sea. The sedimentary sequence mainly of fluvial deposits comprise an important component ...Quaternary buried ancient river channels are widespread in the shallow-level sediments of the northern shelf of the South China Sea. The sedimentary sequence mainly of fluvial deposits comprise an important component part of the low-stand system tract and transgressive system tract in the study region. The plannar variation and spatial association of the sedimentary features such as incised valley fillings, deltaic foreset wedges and block slides of shelf-marginal fans reflect the palaeogeographic environment during the fall of the regional sea level in the northern part of the South China Sea. Based on the high-resolution seismic reflection data and gelogical data from boreholes, the present paper makes an integrated interpretation of the Quaternary ancient river channels in the shallow sediments of the study area, studies the sedimentary features of the ancient channels such as their spatial distribution, seismic facies reflection indicators, sedimentary facies and sand -body types, and discusses their formational setting and evolutionary model, with the main purpose to render a service to the hydrocarbon resources exploration and development and marine engineering in the northern shelf of the South China Sea.展开更多
The history of natural fire since 37 kaBP and its relationship to climate for the northern part of the South China Sea are revealed from the statistic study of charcoal particles and associated pollen data from deep s...The history of natural fire since 37 kaBP and its relationship to climate for the northern part of the South China Sea are revealed from the statistic study of charcoal particles and associated pollen data from deep sea core 17940 (20° 07’N, 117° 23’E, 1 727 m in water depth). Our study indicates that, during the last glaciation, the concentration of charcoal and the ratio of con centration between charcoal and terrestrial pollen are much higher than that of the Holocene. This can be explained as the relatively high strength and frequency of natural fire during glaciation which is probably due to the drier climate; during the Last Glacial Maximum (LGM), the substantial rising of the concentration of large and medium charcoal particles probably suggests the local source area of the natural fires, i.e. the exposed continental shelf; moreover, the correlation between charcoal concentration with different size and pollen percentage may elucidate different transport dynamics. During the glacial time, almost all the peak concentrations of small particles correspond with the peak pollen percentage ofArtemisia, an indicator of comparatively dry climate, while for large particles, their concentrations always lag behind small particles and thus change with pollen percentage of montane conifers implying relatively cold and humid climate. So, it is possible to assume that small particles reflect regional emissions under drier climate and were brought over by strengthened winter monsoon. When the climate became relatively humid, the increasing precipitation carried the large particles accumulated on continental shelf before under arid condition to the studied area.展开更多
基金The present paper represents the result of a scientific research subject of the UNDP-assisted Project "Marine Engineering Geological Investigation of the Pearl River Mouth Basin in the Northern Party of the South China Sea" (Project No. UNDP.CPR/85/044)
文摘Quaternary buried ancient river channels are widespread in the shallow-level sediments of the northern shelf of the South China Sea. The sedimentary sequence mainly of fluvial deposits comprise an important component part of the low-stand system tract and transgressive system tract in the study region. The plannar variation and spatial association of the sedimentary features such as incised valley fillings, deltaic foreset wedges and block slides of shelf-marginal fans reflect the palaeogeographic environment during the fall of the regional sea level in the northern part of the South China Sea. Based on the high-resolution seismic reflection data and gelogical data from boreholes, the present paper makes an integrated interpretation of the Quaternary ancient river channels in the shallow sediments of the study area, studies the sedimentary features of the ancient channels such as their spatial distribution, seismic facies reflection indicators, sedimentary facies and sand -body types, and discusses their formational setting and evolutionary model, with the main purpose to render a service to the hydrocarbon resources exploration and development and marine engineering in the northern shelf of the South China Sea.
文摘The history of natural fire since 37 kaBP and its relationship to climate for the northern part of the South China Sea are revealed from the statistic study of charcoal particles and associated pollen data from deep sea core 17940 (20° 07’N, 117° 23’E, 1 727 m in water depth). Our study indicates that, during the last glaciation, the concentration of charcoal and the ratio of con centration between charcoal and terrestrial pollen are much higher than that of the Holocene. This can be explained as the relatively high strength and frequency of natural fire during glaciation which is probably due to the drier climate; during the Last Glacial Maximum (LGM), the substantial rising of the concentration of large and medium charcoal particles probably suggests the local source area of the natural fires, i.e. the exposed continental shelf; moreover, the correlation between charcoal concentration with different size and pollen percentage may elucidate different transport dynamics. During the glacial time, almost all the peak concentrations of small particles correspond with the peak pollen percentage ofArtemisia, an indicator of comparatively dry climate, while for large particles, their concentrations always lag behind small particles and thus change with pollen percentage of montane conifers implying relatively cold and humid climate. So, it is possible to assume that small particles reflect regional emissions under drier climate and were brought over by strengthened winter monsoon. When the climate became relatively humid, the increasing precipitation carried the large particles accumulated on continental shelf before under arid condition to the studied area.