期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
一种IMNGO-VMD小样本数据下的轴承故障识别方法 被引量:3
1
作者 林伟 曹登学 顾雨 《制造技术与机床》 北大核心 2023年第9期17-24,共8页
针对滚动轴承发生故障时信息提取不充分、可用故障样本少等问题,文章提出一种改进的北方苍鹰优化算法(IMNGO)来优化变分模态分解(VMD)和支持向量机(SVM)进行小样本的轴承故障识别。首先使用云平台采集实验数据,然后利用IMNGO算法对VMD... 针对滚动轴承发生故障时信息提取不充分、可用故障样本少等问题,文章提出一种改进的北方苍鹰优化算法(IMNGO)来优化变分模态分解(VMD)和支持向量机(SVM)进行小样本的轴承故障识别。首先使用云平台采集实验数据,然后利用IMNGO算法对VMD进行参数优化找到最佳的本征模态分量(IMF),构建特征向量能量谱和主元贡献图筛选最佳的IMF分量。然后将提取的特征信息导入到IMNGO优化后的SVM中进行轴承的小样本检测识别。经过IMNGO优化后,单工况下的识别准确率达到了99.20%,复杂工况下的识别准确率达到了94.45%。小样本数据下,文章提出的方法相对于传统的检测方法识别准确率有了大幅提升。 展开更多
关键词 北方苍鹰 变分模态分解 轴承 支持向量机 故障识别
下载PDF
基于特征工程和NGO-LSTM的水质预测模型研究
2
作者 虞佳颖 肖姚 《人民长江》 北大核心 2024年第10期86-93,共8页
由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short T... 由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short Term Memory,FE-NGO-LSTM)混合模型。首先对水质数据集进行缺失值补齐、特征筛选与特征多项式构造,然后基于NGO-LSTM模型优化模型参数,提升预测性能;对不同多项式阶数下的特征预测效果进行分析之后,将该模型与基于灰狼优化算法、鲸鱼优化算法及粒子群优化算法的LSTM模型进行对比;最后,在太湖流域东苕溪城南监测断面对该模型进行了验证,计算FE-NGO-LSTM模型预见期为4,8,12,16,20,24 h的预测结果。试验结果显示:当多项式阶数为2阶时,模型预测效果最好,FE-NGO-LSTM模型相比基于其他优化算法的LSTM模型,平均绝对误差、均方误差、均方根误差分别至少降低9.0%,12.9%及6.3%,且随着预见期的增加,预测误差仍在可接受范围内,说明FE-NGO-LSTM模型在预测溶解氧浓度时具有一定优势与泛化性。 展开更多
关键词 水质预测 溶解氧 特征工程 深度学习 北方苍鹰优化算法 耦合模型 苕溪流域 太湖流域
下载PDF
Predicting nesting habitat of Northern Goshawks in mixed aspen-lodgepole pine forests in a high-elevation shrub-steppe dominated landscape
3
作者 Robert A. Miller Jay D. Carlisle +1 位作者 Marc J. Bechard Dena Santini 《Open Journal of Ecology》 2013年第2期109-115,共7页
We developed a habitat suitability model for predicting nest locations of breeding Northern Goshawks (Accipiter gentilis) in the high-elevation mixed forest and shrub-steppe habitat of south-central Idaho, USA. We use... We developed a habitat suitability model for predicting nest locations of breeding Northern Goshawks (Accipiter gentilis) in the high-elevation mixed forest and shrub-steppe habitat of south-central Idaho, USA. We used elevation, slope, aspect, ruggedness, distance-to-water, canopy cover, and individual bands of Landsat imagery as predictors for known nest locations with logistic regression. We found goshawks prefer to nest in gently-sloping, east-facing, non-rugged areas of dense aspen and lodgepole pine forests with low reflectance in green (0.53 - 0.61 μm) wavelengths during the breeding season. We used the model results to classify our 43,169 hectare study area into nesting suitability categories: well suited (8.8%), marginally suited (5.1%), and poorly suited (86.1%). We evaluated our model’s performance by comparing the modeled results to a set of GPS locations of known nests (n = 15) that were not used to develop the model. Observed nest locations matched model results 93.3% of the time for well suited habitat and fell within poorly suited areas only 6.7% of the time. Our method improves on goshawk nesting models developed previously by others and may be applicable for surveying goshawks in adjacent mountain ranges across the northern Great Basin. 展开更多
关键词 ACCIPITER gentilis Breeding ECOLOGY HABITAT Idaho NEST Model northern goshawk
下载PDF
基于改进北方苍鹰优化算法的多阈值图像分割 被引量:21
4
作者 付雪 朱良宽 +2 位作者 黄建平 王璟瑀 ARYSTAN Ryspayev 《计算机工程》 CAS CSCD 北大核心 2023年第7期232-241,共10页
多阈值图像分割是一种简单、准确、高效且普遍的图像分割方法,相比单阈值图像分割更适用于包含大量信息的彩色图像。在多阈值图像分割中,随着阈值数量的增加,传统的枚举法计算量增大,分割一幅彩色图像不仅需要更多的时间,而且分割精度... 多阈值图像分割是一种简单、准确、高效且普遍的图像分割方法,相比单阈值图像分割更适用于包含大量信息的彩色图像。在多阈值图像分割中,随着阈值数量的增加,传统的枚举法计算量增大,分割一幅彩色图像不仅需要更多的时间,而且分割精度也随之降低。提出一种基于改进北方苍鹰优化(INGO)算法的多阈值图像分割方法。利用立方混沌优化与透镜成像反向学习策略增加种群多样性,在优化初始解的同时扩大种群搜索范围,使INGO算法尽可能搜索到潜在的最优解,增强算法的搜索能力。将最优最差反向与透镜成像反向学习策略相结合,避免INGO算法易陷入局部最优的情况,提高收敛精度。在对经典的伯克利测试图像进行多阈值彩色图像分割的实验结果表明,在GWO、PSO、ChOA等算法中,INGO算法取得峰值信噪比和特征相似度最优平均值的占比分别为100.000%和78.125%,在保证算法收敛效率的同时获得较优的图像分割结果,在多阈值图像分割领域具有较强的理论应用价值。 展开更多
关键词 北方苍鹰优化 多阈值分割 对称交叉熵 立方混沌 透镜成像反向学习策略
下载PDF
基于二次分解NGO-VMD残差项与长短时记忆神经网络的超短期风功率预测 被引量:11
5
作者 宋江涛 崔双喜 刘洪广 《科学技术与工程》 北大核心 2023年第6期2428-2437,共10页
鉴于目前使用变分模态分解(variational modal decomposition, VMD)搭建的单次或二次分解风功率组合预测模型中,大多均直接忽略了风功率经VMD分解后残差项所包含的丰富信息,使得超短期风功率预测精度受限。提出了一种基于二次分解NGO-VM... 鉴于目前使用变分模态分解(variational modal decomposition, VMD)搭建的单次或二次分解风功率组合预测模型中,大多均直接忽略了风功率经VMD分解后残差项所包含的丰富信息,使得超短期风功率预测精度受限。提出了一种基于二次分解NGO-VMD残差项、K均值聚类算法与长短时记忆神经网络(long short-term memory, LSTM)的组合预测模型。首先,使用北方苍鹰优化算法(northern goshawk optimization, NGO)对VMD的参数进行寻优,以选出最佳VMD参数组合;其次,采用NGO-VMD模型对VMD残差项进行二次分解,深度挖掘VMD残差项所包含的丰富信息;再次,利用K均值聚类算法解决VMD分解模态分量个数多,计算量繁冗的问题;最后,创建LSTM模型对各子模态分量分别进行预测并叠加各子模态分量的预测值得到超短期风功率预测结果。结果表明:该二次分解NGO-VMD残差项、K均值聚类算法和LSTM组合预测模型可充分挖掘VMD残差项的重要信息,有效提高了超短期风功率预测的精度。 展开更多
关键词 二次分解 超短期风功率预测 北方苍鹰优化算法 K均值聚类算法 组合预测
下载PDF
NGO-GPR与投影寻踪联合驱动的大坝变形预测模型 被引量:11
6
作者 刘伟琪 陈波 《水力发电学报》 CSCD 北大核心 2023年第4期126-136,共11页
建立准确可靠的变形预测模型对保证大坝安全运行至关重要,然而现有监控模型难以兼顾海量监测数据的多维度时空关联特性,不能有效反映大坝整体和区域性变形性态。为此,引入考虑测点综合距离的层次凝聚聚类和投影寻踪法,深入挖掘坝体位移... 建立准确可靠的变形预测模型对保证大坝安全运行至关重要,然而现有监控模型难以兼顾海量监测数据的多维度时空关联特性,不能有效反映大坝整体和区域性变形性态。为此,引入考虑测点综合距离的层次凝聚聚类和投影寻踪法,深入挖掘坝体位移场海量监测数据中的关联信息,得到反映分区多测点变形特征的融合变形序列;提出一种由北方苍鹰算法优化的高斯过程回归,以此建立分区多测点融合变形预测模型,并依据拉依达准则构建预测结果的置信区间。结合工程实例,探究了不同核函数对模型预测精度的影响;通过对比分析,验证了本文方法对比几种常规模型具有更高预测精度和适用性,且能对预测结果的可靠程度进行估计,对大坝变形性态的安全监测具有一定工程应用价值。 展开更多
关键词 大坝变形预测 聚类分区 投影寻踪法 北方苍鹰优化算法 高斯过程回归
下载PDF
采用改进北方苍鹰算法的微电网优化调度研究 被引量:2
7
作者 陈将宏 王羲沐 +2 位作者 李伟亮 李雪莲 袁腾 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期281-289,共9页
微电网系统通常由多种分布式电源组成,为降低运行成本,常使用智能算法对微电网进行调度。智能算法在求解微电网调度模型时容易陷入局部最优解,导致求解精度差,因此在北方苍鹰算法的基础上,提出了一种混合策略改进的北方苍鹰算法(HNGO),... 微电网系统通常由多种分布式电源组成,为降低运行成本,常使用智能算法对微电网进行调度。智能算法在求解微电网调度模型时容易陷入局部最优解,导致求解精度差,因此在北方苍鹰算法的基础上,提出了一种混合策略改进的北方苍鹰算法(HNGO),利用反向学习、Metropolies准则以及自适应t分布变异提高求解精度,同时构建了考虑可再生能源出力特性的需求响应模型,使负荷曲线与可再生能源出力曲线更贴近,然后建立日运行成本最低的微电网优化调度模型,并利用HNGO求解。对比仿真结果显示所提算法具有更好的求解精度,且所提需求响应模型能显著降低燃料成本。 展开更多
关键词 北方苍鹰算法 反向学习 模拟退火算法 自适应t分布变异 需求响应
下载PDF
基于新型相似日选取和VMD-NGO-BiGRU的短期光伏功率预测 被引量:1
8
作者 王瑞 张璐婷 逯静 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期68-80,共13页
光伏功率预测在现代电力系统调度和运行中起着重要作用.针对光伏发电功率的多变性和复杂性,提出了一种基于新型相似日选取和北方苍鹰算法(Northern Goshawk Optimization,NGO)优化双向门控循环单元(Bidirectional Gated Recurrent Unit,... 光伏功率预测在现代电力系统调度和运行中起着重要作用.针对光伏发电功率的多变性和复杂性,提出了一种基于新型相似日选取和北方苍鹰算法(Northern Goshawk Optimization,NGO)优化双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)的短期光伏功率预测方法.首先,利用斯皮尔曼相关系数选取主要气象因子,通过变分模态分解(Variational Mode Decomposition,VMD)将原始光伏功率和最大气象因子分解重构为一系列子信号.其次,通过构建新的评价指标筛选出相似日数据集,利用一组BiGRU建立以相似日子信号为网络输入的深度学习模型,并利用NGO对每个BiGRU网络的超参数进行有效优化.最后,对各子信号的预测结果进行综合,得到最终的光伏功率预测值.仿真结果表明,所提混合深度学习方法在预测精度和计算效率方面均优于其他方法. 展开更多
关键词 光伏功率预测 变分模态分解 双向门控循环单元 北方苍鹰算法
下载PDF
基于EEMD-NGO-LSTM神经网络耦合的月径流预测模型及应用 被引量:1
9
作者 张冲 王千凤 +2 位作者 齐新虎 王思宇 陈末 《水力发电》 CAS 2024年第1期1-7,共7页
为了提高径流序列的稳定度和精度,减小参数优化不当导致的非线性误差,研究将长短期记忆神经网络(LSTM)、集成经验模态分解(EEMD)和北方苍鹰优化算法(NGO)相结合,构建了EEMD-NGO-LSTM耦合预测模型。将此预测模型应用于模拟东辽河中下游... 为了提高径流序列的稳定度和精度,减小参数优化不当导致的非线性误差,研究将长短期记忆神经网络(LSTM)、集成经验模态分解(EEMD)和北方苍鹰优化算法(NGO)相结合,构建了EEMD-NGO-LSTM耦合预测模型。将此预测模型应用于模拟东辽河中下游的控制总站——王奔水文站2012年~2021年逐月径流过程,并与鲸鱼算法(WOA)以及灰狼算法(GWO)优化的长短期记忆神经网络进行模型比较。结果表明,EEMD-NGO-LSTM耦合预测模型的超参数迭代速度最快,精度最高,预测结果最接近实测值,其决定系数R^(2)为0.8643。而后采用CMIP6气候模式(SSP126情景)下的2030年的降水、气温数据输入模型进行预测,在气温上升1℃,降水不变的情景下,年径流量将增加6.61%;在降水升高5%,气温不变的情景下,年径流量将增加6.95%;在气温上升1℃、降水升高5%的情境下,年径流量将增加22.16%。 展开更多
关键词 月径流预测 集成经验模态分解 北方苍鹰优化算法 长短期记忆神经网络 耦合模型 预测精度
下载PDF
改进北方苍鹰算法在光伏阵列中应用研究 被引量:4
10
作者 李斌 郭自强 高鹏 《电子测量与仪器学报》 CSCD 北大核心 2023年第7期131-139,共9页
针对北方苍鹰优化算法(NGO)存在收敛精度低和易陷入局部最优等问题,提出一种改进北方苍鹰算法(INGO),并应用于光伏阵列故障诊断。首先,利用Circle映射、自适应权重因子和Levy飞行策略改进了北方苍鹰优化算法,结合高斯检测机制和混合核... 针对北方苍鹰优化算法(NGO)存在收敛精度低和易陷入局部最优等问题,提出一种改进北方苍鹰算法(INGO),并应用于光伏阵列故障诊断。首先,利用Circle映射、自适应权重因子和Levy飞行策略改进了北方苍鹰优化算法,结合高斯检测机制和混合核极限学习机(HKELM)搭建INGO-HKELM故障诊断模型。其次,将INGO算法与NGO、粒子群算法(PSO)、鲸鱼算法(WOA)在测试函数上进行比较,表明在寻优能力、稳定性等方面具有优越性。然后,分析不同运行状态下光伏阵列运行特征,提出一种5维故障特征向量,作为数据的输入。最后,将4种算法分别对HKELM的核参数进行优化并实现故障分类。结果表明,所提方法能够准确地检测出光伏组件发生的异常状态,INGO-HKELM模型准确率达到93.74%,验证了所提算法的有效性和可行性。 展开更多
关键词 改进北方苍鹰算法 光伏阵列 故障诊断 混合核极限学习机
下载PDF
基于改进北方苍鹰算法优化混合核极限学习机的变压器故障诊断方法 被引量:4
11
作者 王士彬 李多 +3 位作者 赵娜 谢文龙 黄伟 季鸿宇 《湖南电力》 2023年第4期125-132,共8页
为提高变压器故障诊断精度,提出了一种基于改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的变压器故障诊断方法。首先,利用Relief... 为提高变压器故障诊断精度,提出了一种基于改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的变压器故障诊断方法。首先,利用ReliefF算法对19维变压器故障特征进行筛选降维;其次,引入Logistic-tent混沌映射、柯西变异算子和非线性递增权重三种策略改进北方苍鹰优化算法,提高全局寻优能力;然后使用改进后的INGO算法优化HKELM的初始参数,以提高HKELM的分类准确性和鲁棒性;最后,将经ReliefF优选后的特征作为模型的输入特征,并与不同变压器故障诊断模型进行对比实验。仿真结果表明,INGO-HKELM故障诊断模型相较于其他模型具有更高的故障诊断精度。 展开更多
关键词 变压器 故障诊断 北方苍鹰优化算法 混合核极限学习机
下载PDF
基于改进变分模态分解和小波阈值法的单相接地故障电流降噪 被引量:4
12
作者 王孔贤 邵英 王黎明 《科学技术与工程》 北大核心 2023年第29期12556-12566,共11页
针对电力系统输配电线路发生单相接地故障时,电气设备间的电磁环境复杂,现场环境干扰严重导致故障录波装置采集到的故障零序电流信号含有大量噪声,影响后续选线准确率的问题,提出了一种改进变分模态分解(variational mode decomposition... 针对电力系统输配电线路发生单相接地故障时,电气设备间的电磁环境复杂,现场环境干扰严重导致故障录波装置采集到的故障零序电流信号含有大量噪声,影响后续选线准确率的问题,提出了一种改进变分模态分解(variational mode decomposition,VMD)和小波阈值法联合的单相接地故障的零序电流降噪方法,通过北方苍鹰优化算法优化改进VMD对零序电流信号分解,引入自适应相关阈值对分解后的分量进行筛选,对噪声分量进行小波阈值法降噪,最后将信号进行重构。通过搭建模型进行仿真实验,所提算法比传统VMD降噪算法信噪比提高了5.52%~35.99%,均方根误差降低了12.78%~30.88%,与小波阈值降噪方法、经验模态分解(ensemble empirical mode decomposition,EEMD)-小波阈值降噪方法、完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)-小波阈值降噪方法相比,也都有明显的优势,并且在标准测试信号Heavy Sine信号和Bumps信号中进行实验,验证了算法的适用性。 展开更多
关键词 单相接地故障 零序电流降噪 北方苍鹰优化算法 变分模态分解 小波阈值法
下载PDF
基于INGO-SWGMN混合模型的超短期风速预测研究 被引量:1
13
作者 付文龙 章轩瑞 +2 位作者 张海荣 傅雨晨 刘兴韬 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期133-143,共11页
为提高超短期风速预测的精度,提出一种融合变分模态分解(VMD)、相空间重构、改进的北方苍鹰优化算法(INGO)和共享权重门控记忆网络(SWGMN)的超短期风速混合预测模型。首先,考虑到风速的强波动性会对预测带来不利影响,采用VMD对风速时间... 为提高超短期风速预测的精度,提出一种融合变分模态分解(VMD)、相空间重构、改进的北方苍鹰优化算法(INGO)和共享权重门控记忆网络(SWGMN)的超短期风速混合预测模型。首先,考虑到风速的强波动性会对预测带来不利影响,采用VMD对风速时间序列进行分解,得到一系列相对平稳的子序列。然后对各子序列分量进行相空间重构,得到相应的相空间矩阵。接着针对长短期记忆网络(LSTM)训练时间较长和权重参数较多的问题,提出一种SWGMN对各子序列分量建立预测模型。同时,为提高模型预测性能,提出一种INGO对SWGMN模型的两个超参数进行寻优,得到最优参数组合。最后累加各子序列预测值,得到最终风速预测结果。实验结果表明,在单步预测和多步预测中,所提方法的平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数R2分别为0.1828 m/s、0.2263 m/s、4.5481%、0.987和0.2429 m/s、0.3107 m/s、6.1113%、0.976,相较于传统方法具有更高的预测精度和预测效率。 展开更多
关键词 风速 预测 深度学习 变分模态分解 共享权重门控记忆网络 改进的北方苍鹰优化算法
下载PDF
基于NGO-VMD和改进GoogLeNet的齿轮箱故障诊断方法 被引量:1
14
作者 李俊卿 刘若尧 何玉灵 《机床与液压》 北大核心 2024年第12期193-201,共9页
目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VM... 目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VMD去除故障信号中的噪声;对原始GoogLeNet的结构进行合理删减,并利用延迟丢弃法、可训练的ReLU函数(TReLU)对其改进;最后,将去噪后的故障信号转换为二维图作为改进GoogLeNet的输入数据进行网络的训练及分类,得到故障诊断结果。实验结果表明:与其他降噪方法相比,NGO-VMD方法的降噪效果明显,能显著提高故障诊断的准确率;与常见的卷积神经网络相比,提出的改进GoogLeNet能进一步提高故障诊断的准确率,达到了97.2%。 展开更多
关键词 变分模态分解(VMD) 北方苍鹰优化(NGO)算法 改进GoogLeNet 齿轮箱故障诊断
下载PDF
基于NGO-VMD的混合储能功率分配策略
15
作者 王海燕 钱林宇 《中国电力》 CSCD 北大核心 2024年第11期119-128,共10页
为解决风电场并网时的功率波动影响电网稳定性的问题,提出一种基于北方苍鹰(northern goshawk optimization,NGO)算法优化变分模态分解(variational mode decomposition,VMD)参数的混合储能功率分配策略。首先,按照风电场并网技术规范,... 为解决风电场并网时的功率波动影响电网稳定性的问题,提出一种基于北方苍鹰(northern goshawk optimization,NGO)算法优化变分模态分解(variational mode decomposition,VMD)参数的混合储能功率分配策略。首先,按照风电场并网技术规范,采用自适应平均滤波法对风力发电功率进行滤波,并由滤波后的并网功率计算出波动功率。然后,采用NGO优化VMD算法中分解模态数K值和二次惩罚因子α值的最优值组合,将波动功率信号经VMD分解后实现在锂电池和超级电容器的功率分配,最后,采用双重模糊控制对混合储能系统(hybrid energy storage system,HESS)的荷电状态(state of charge,SOC)进行优化,完成HESS功率的二次分配。仿真结果表明,该控制策略不仅能够满足风电并网最大功率波动要求,还可以保持SOC维持在合理范围,实现HESS长期安全运行。 展开更多
关键词 风电并网 北方苍鹰算法 变分模态分解 混合储能 模糊控制
下载PDF
基于VMD-NGO-LSTM的融雪洪水汛期非平稳性极值径流预测模型及应用
16
作者 周霞 周峰 《人民珠江》 2024年第6期127-137,共11页
金沟河属于典型的融雪补给流域,受自然环境、气候变化和人类活动等因素的影响,汛期极值径流序列表现出非平稳性及复杂性特征,给流域内汛期极值径流精准预测带来新的挑战。为解决该地区汛期极值径流的非平稳性对于预测结果的影响,引入变... 金沟河属于典型的融雪补给流域,受自然环境、气候变化和人类活动等因素的影响,汛期极值径流序列表现出非平稳性及复杂性特征,给流域内汛期极值径流精准预测带来新的挑战。为解决该地区汛期极值径流的非平稳性对于预测结果的影响,引入变分模态分解算法(Variational Mode Decomposition,VMD),提出一种基于北方苍鹰优化算法(Northern Goshawk Optimization,NGO)与长短期记忆神经网络(Long Short-Term Memory,LSTM)的组合预测模型(VMD-NGO-LSTM),应用于金沟河流域八家户水文站1964—2016年的汛期极值径流预测,采用均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、Nash系数(NSE)评价模型的预测能力。结果表明:(1)根据金沟河流域融雪洪水汛期径流极值序列的周期变化和趋势变化的水文特性变化结果表明径流极大值序列和径流极小值序列均具有非平稳性;(2)VMD-NGO-LSTM预测模型的NSE均大于0.97,且RMSE、MAPE、MAE值均处于偏小状态,与VMD-LSTM模型和VMD-NGO-BP模型相比,VMD-NGO-LSTM模型能够很好地预测八家户汛期极值径流的变化过程。该研究为汛期极值径流预测工作提供了新的思路,对新疆地区防洪减灾具有一定参考价值。 展开更多
关键词 融雪洪水 极值径流预测 变分模态分解 北方苍鹰优化算法 长短期记忆神经网络 非平稳性
下载PDF
改进的北方苍鹰算法优化粒子滤波算法
17
作者 李广军 徐祥书 《台州学院学报》 2024年第3期42-52,共11页
针对标准粒子滤波过程的权值退化和样本贫化问题,提出一种改进的北方苍鹰算法优化粒子滤波算法INGOPF(Improved Northern Goshawk Optimization for Particle Filter)。首先,利用透镜成像学习策略增加种群多样性,在优化初始解的同时增... 针对标准粒子滤波过程的权值退化和样本贫化问题,提出一种改进的北方苍鹰算法优化粒子滤波算法INGOPF(Improved Northern Goshawk Optimization for Particle Filter)。首先,利用透镜成像学习策略增加种群多样性,在优化初始解的同时增加种群搜索范围,使算法尽可能搜索到潜在的最优解,增加算法的搜索能力。其次,将改进的北方苍鹰位置更新公式用于优化迭代更新,然后将最优最差学习策略与透镜成像学习策略结合,克服算法陷入局部最优和易早熟的情况,提高算法的收敛精度。最后,将INGOPF应用于锂电池的寿命预测。仿真结果表明:与标准粒子滤波以及粒子群算法优化的粒子滤波方法相比,INGOPF有效提升了粒子多样性、系统状态估计精度、滤波稳定性和实际运用能力。 展开更多
关键词 粒子滤波 北方苍鹰算法 透镜成像学习策略 状态估计
下载PDF
基于RSSR融合RNGO-Elman神经网络的室内可见光定位
18
作者 张慧颖 盛美春 +2 位作者 梁士达 马成宇 李月月 《半导体光电》 CAS 北大核心 2024年第3期449-457,共9页
针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅... 针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅助参考点的接收信号强度比值和接收机的真实位置作为训练集数据,建立不受动态环境影响的指纹数据库。针对NGO算法收敛速度慢、容易陷入局部最优等问题,利用折射反向学习策略初始化种群,增加种群多样性,引入非线性权重因子来加快收敛速度,避免陷入局部最优。使用优化后的NGO算法来优化Elman神经网络的初始权值和阈值,构建RNGO-Elman动态定位预测模型。仿真结果表明,在4m×4m×3m的实验空间下,优化后的RNGO-Elman定位模型平均定位误差为1.34cm,定位精度相较于Elman定位算法、NGO-Elman定位算法分别提高了82%,21%。在LED发射功率波动时,基于RSSR的RNGO-Elman定位误差为1.29cm,1.38cm。所提可见光定位方法具有定位精度高、定位性能稳定等优点。 展开更多
关键词 光通信 北方苍鹰算法 ELMAN神经网络 接收信号强度比 可见光定位
下载PDF
基于参数优化的VMD-SVD和LSTM的输电杆塔倾斜状态识别 被引量:3
19
作者 赵隆 温冠儒 +2 位作者 刘志成 袁鹏 董新胜 《中国电力》 CSCD 北大核心 2023年第12期217-226,237,共11页
针对输电杆塔结构状态信息提取难度大、精度低等问题,提出了一种基于北方苍鹰算法优化的变分模态分解(northern goshawk optimized variational mode decomposition,NGO-VMD)与长短期记忆(long shortterm memory,LSTM)神经网络的输电杆... 针对输电杆塔结构状态信息提取难度大、精度低等问题,提出了一种基于北方苍鹰算法优化的变分模态分解(northern goshawk optimized variational mode decomposition,NGO-VMD)与长短期记忆(long shortterm memory,LSTM)神经网络的输电杆塔倾斜状态识别方案。通过北方苍鹰优化算法解决了变分模态分解参数难确定的问题,并且证明其分解的各阶本征模态分量(intrinsic mode function,IMF)可以有效提取出杆塔结构的模态信息。为了使信息特征更为明显,对IMF分量进行奇异值分解(singular value decomposition,SVD),发现各阶分量的奇异值在杆塔不同状态下有较为明显的区别。最后引入LSTM神经网络进行特征分类,形成故障诊断模型。依托某110kV猫头塔对模型进行试验验证,结果表明:所提方法对杆塔倾斜状态的识别准确率为96.68%,与其他方法相比,具有效率更高、稳定性更强、更加精准的优势。 展开更多
关键词 杆塔倾斜 状态识别 北方苍鹰算法优化 自适应变分模态分解 奇异值分解 长短期记忆神经网络
下载PDF
基于改进北部苍鹰算法的垂直斗式提升机减速器优化
20
作者 刘玲 姜全新 《机械强度》 CAS CSCD 北大核心 2024年第1期243-248,共6页
垂直斗式提升机是一种固定装置的机械输送设备,具有输送能力强、提升高度高、运行平稳可靠、寿命长等优点。减速器是垂直斗式提升机的关键部件,为高效获得减速器的最优解,提出一种冲刺决胜策略改进的北部苍鹰优化算法。采用压力容器和... 垂直斗式提升机是一种固定装置的机械输送设备,具有输送能力强、提升高度高、运行平稳可靠、寿命长等优点。减速器是垂直斗式提升机的关键部件,为高效获得减速器的最优解,提出一种冲刺决胜策略改进的北部苍鹰优化算法。采用压力容器和悬臂梁两个经典非线性约束工程算例对改进北部苍鹰算法进行性能验证,结果表明,改进北部苍鹰算法具有良好的收敛速度。在此基础上,对垂直斗式提升机减速器进行优化设计,结果减速器的中心距由初始的720 mm减少为680.16 mm,减少了5.33%。说明改进北部苍鹰优化算法可以作为一种高效的优化算法求解实际工程问题。 展开更多
关键词 北部苍鹰算法 冲刺决胜策略 垂直斗式提升机 减速器 优化算法
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部