Continuous soil erosion has caused serious land degradation in the black soil area of Northeast China. The primary objective of this study was to determine the effects of accelerated erosion on soil productivity, as m...Continuous soil erosion has caused serious land degradation in the black soil area of Northeast China. The primary objective of this study was to determine the effects of accelerated erosion on soil productivity, as measured by soybean (Glycine max L. Merr.) yields. Eight erosion levels, 0, 10, 20, 30, 40, 50, 60, and 70 cm, were simulated by imitating the integrated process of natural erosion and tillage activity. Each erosion level had two sub-treatments: conventional fertilization and no fertilization. Soil erosion was found to affect survival probability and to cause remarkable reductions in the Leaf Area Index (LAI), plant height, pod number, biomass, and yield. Soybean yield was exponentially decreased with the increase of soil erosion depth. Compared to erosion depth of 0 cm, erosion levels of 10, 20, 30, 40, 50, 60, and 70 cm experienced reductions in soybean yield by 28.8%, 37.8%, 43.5%, 52.6%, 53.1%, 52.9%, and 64.1% respectively when fertilized whereas the reductions at those levels were 32.6%, 42.2%, 53.0%, 54.0%, 65.8%, 69.7%, and 72.6%, respectively, when unfertilized. At the erosion depths of 10, 20, 30, 40, 50, 60, and 70 cm, the yield reductions per 10 cm of soil eroded when fertilized were 28.8%, 18.9%, 14.5%, 13.2%, 10.6%, 8.8%, and 9.2%, averaged 14.9%, but when unfertilized they were 32.6%, 21.1%, 17.7%, 13.5%, 13.2%, 11.6%, and 10.4%, averaged 17.1%. The results also showed that chemical fertili zers could enhance the yields of eroded soil, but could not recover the yields to the pre-erosion level. Additionally, the results indicated that the primary reason for the decrease in soybean yield with increasing erosion depth was the loss of soil organic matter, soil N and P. These results may aid in selecting effective soil erosion control strategy, forecasting land degradation, establishing soil erosion tolerance, and evaluating the economic cost of soil erosion in the black soil region in Northeast China.展开更多
为探讨气候变化背景下东北农作区大豆需水量变化特征,基于Simulation of Evapotranspiration of Applied Water(SIMETAW)模型,利用东北农作区58个气象站点1961—2010年的气象资料,分析气候变化背景下大豆不同生育时期内有效降雨量、需水...为探讨气候变化背景下东北农作区大豆需水量变化特征,基于Simulation of Evapotranspiration of Applied Water(SIMETAW)模型,利用东北农作区58个气象站点1961—2010年的气象资料,分析气候变化背景下大豆不同生育时期内有效降雨量、需水量(ETc)与缺水量(WD)的时空变化特征。结果表明:近50年来东北农作区大豆花前有效降雨呈微弱增加的趋势,花后有效降雨呈下降趋势,大豆全生育期有效降雨量呈下降趋势,气候呈现暖干趋势;在大豆全生育期及各生育阶段长白山区的有效降雨量均高于其他亚区。全区大豆全生育期50年平均需水量为398.29mm,呈下降趋势,其分布呈西多东少、南多北少;全区大豆播种-出苗阶段需水量多年来保持稳定,平均为27.36mm,其分布呈北部及中部多、南部少。全区大豆出苗-开花阶段平均需水量为130.90mm,呈下降趋势,其分布呈南多北少,全区大豆开花-成熟阶段平均需水量为240.03mm,呈上升趋势,其分布呈中部多、南北少。近50年来,东北农作区大豆全生育期及不同生育阶段内缺水量为正值,其中松辽平原区大豆缺水量值最大。如果不考虑灌溉,研究区域有效降雨不能满足大豆的需水,有条件的地区,应适时补充灌溉,来保证大豆的稳产高产。展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 40471082) National Basic Research Program of China (Grant No. 2007CB407204)
文摘Continuous soil erosion has caused serious land degradation in the black soil area of Northeast China. The primary objective of this study was to determine the effects of accelerated erosion on soil productivity, as measured by soybean (Glycine max L. Merr.) yields. Eight erosion levels, 0, 10, 20, 30, 40, 50, 60, and 70 cm, were simulated by imitating the integrated process of natural erosion and tillage activity. Each erosion level had two sub-treatments: conventional fertilization and no fertilization. Soil erosion was found to affect survival probability and to cause remarkable reductions in the Leaf Area Index (LAI), plant height, pod number, biomass, and yield. Soybean yield was exponentially decreased with the increase of soil erosion depth. Compared to erosion depth of 0 cm, erosion levels of 10, 20, 30, 40, 50, 60, and 70 cm experienced reductions in soybean yield by 28.8%, 37.8%, 43.5%, 52.6%, 53.1%, 52.9%, and 64.1% respectively when fertilized whereas the reductions at those levels were 32.6%, 42.2%, 53.0%, 54.0%, 65.8%, 69.7%, and 72.6%, respectively, when unfertilized. At the erosion depths of 10, 20, 30, 40, 50, 60, and 70 cm, the yield reductions per 10 cm of soil eroded when fertilized were 28.8%, 18.9%, 14.5%, 13.2%, 10.6%, 8.8%, and 9.2%, averaged 14.9%, but when unfertilized they were 32.6%, 21.1%, 17.7%, 13.5%, 13.2%, 11.6%, and 10.4%, averaged 17.1%. The results also showed that chemical fertili zers could enhance the yields of eroded soil, but could not recover the yields to the pre-erosion level. Additionally, the results indicated that the primary reason for the decrease in soybean yield with increasing erosion depth was the loss of soil organic matter, soil N and P. These results may aid in selecting effective soil erosion control strategy, forecasting land degradation, establishing soil erosion tolerance, and evaluating the economic cost of soil erosion in the black soil region in Northeast China.
文摘为探讨气候变化背景下东北农作区大豆需水量变化特征,基于Simulation of Evapotranspiration of Applied Water(SIMETAW)模型,利用东北农作区58个气象站点1961—2010年的气象资料,分析气候变化背景下大豆不同生育时期内有效降雨量、需水量(ETc)与缺水量(WD)的时空变化特征。结果表明:近50年来东北农作区大豆花前有效降雨呈微弱增加的趋势,花后有效降雨呈下降趋势,大豆全生育期有效降雨量呈下降趋势,气候呈现暖干趋势;在大豆全生育期及各生育阶段长白山区的有效降雨量均高于其他亚区。全区大豆全生育期50年平均需水量为398.29mm,呈下降趋势,其分布呈西多东少、南多北少;全区大豆播种-出苗阶段需水量多年来保持稳定,平均为27.36mm,其分布呈北部及中部多、南部少。全区大豆出苗-开花阶段平均需水量为130.90mm,呈下降趋势,其分布呈南多北少,全区大豆开花-成熟阶段平均需水量为240.03mm,呈上升趋势,其分布呈中部多、南北少。近50年来,东北农作区大豆全生育期及不同生育阶段内缺水量为正值,其中松辽平原区大豆缺水量值最大。如果不考虑灌溉,研究区域有效降雨不能满足大豆的需水,有条件的地区,应适时补充灌溉,来保证大豆的稳产高产。