This paper presents a lineament detection method using multi-band remote sensing images. The main objective of this work is to design an automatic image processing tool for lineament mapping from Landsat-7 ETM + satel...This paper presents a lineament detection method using multi-band remote sensing images. The main objective of this work is to design an automatic image processing tool for lineament mapping from Landsat-7 ETM + satellite data. Five procedures were involved: 1) The Principal Component Analysis;2) image enhancement using histogram equalization technique 3) directional Sobel filters of the original data;4) histogram segmentation and 5) binary image generation. The applied methodology was contributed in identifying several known large-scale faults in the Northeast of Tunisia. The statistical and spatial analyses of lineament map indicate a difference of morphological appearance of lineaments in the satellite image. Indeed, all the lineaments present a specific organization. Five groups were classified based on three orientations: NE-SW, E-W and NW-SE. The overlapping of lineament map with the geologic map confirms that these lineaments of diverse directions can be identified and recognized on the field as a fault. The identified lineaments were linked to a deep faults caused by tectonic movements in Tunisia. This study shows the performance of the satellite image processing in the analysis and mapping of the accidents in the northern Atlas.展开更多
文摘This paper presents a lineament detection method using multi-band remote sensing images. The main objective of this work is to design an automatic image processing tool for lineament mapping from Landsat-7 ETM + satellite data. Five procedures were involved: 1) The Principal Component Analysis;2) image enhancement using histogram equalization technique 3) directional Sobel filters of the original data;4) histogram segmentation and 5) binary image generation. The applied methodology was contributed in identifying several known large-scale faults in the Northeast of Tunisia. The statistical and spatial analyses of lineament map indicate a difference of morphological appearance of lineaments in the satellite image. Indeed, all the lineaments present a specific organization. Five groups were classified based on three orientations: NE-SW, E-W and NW-SE. The overlapping of lineament map with the geologic map confirms that these lineaments of diverse directions can be identified and recognized on the field as a fault. The identified lineaments were linked to a deep faults caused by tectonic movements in Tunisia. This study shows the performance of the satellite image processing in the analysis and mapping of the accidents in the northern Atlas.