The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-la...The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.展开更多
This paper presents a mathematical model of linear acoustic wave propagation in fluids. The benefits of a mathematical model over a normal mode analysis are first discussed, then the mathematical model for acoustic pr...This paper presents a mathematical model of linear acoustic wave propagation in fluids. The benefits of a mathematical model over a normal mode analysis are first discussed, then the mathematical model for acoustic propagation in the test medium is developed using computer simulations. The approach is based on a analytical solution to the homogeneous wave equation for fluid medium. A good agreement between the computational presented results with published data.展开更多
Normal mode analysis in dihedral angle space was carried out on two X ray crystal structures and one model structure responded to the same sequence of duplex DNA: d(CGCGAATTCGCG). Comparing these results indicates th...Normal mode analysis in dihedral angle space was carried out on two X ray crystal structures and one model structure responded to the same sequence of duplex DNA: d(CGCGAATTCGCG). Comparing these results indicates that it is reliable and meaningful to carry out normal mode analysis on model structures. The reliability is greater except for the ends of helix.展开更多
文摘The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.
文摘This paper presents a mathematical model of linear acoustic wave propagation in fluids. The benefits of a mathematical model over a normal mode analysis are first discussed, then the mathematical model for acoustic propagation in the test medium is developed using computer simulations. The approach is based on a analytical solution to the homogeneous wave equation for fluid medium. A good agreement between the computational presented results with published data.
文摘Normal mode analysis in dihedral angle space was carried out on two X ray crystal structures and one model structure responded to the same sequence of duplex DNA: d(CGCGAATTCGCG). Comparing these results indicates that it is reliable and meaningful to carry out normal mode analysis on model structures. The reliability is greater except for the ends of helix.