期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
A Perturbation Analysis of Low-Rank Matrix Recovery by Schatten p-Minimization
1
作者 Zhaoying Sun Huimin Wang Zhihui Zhu 《Journal of Applied Mathematics and Physics》 2024年第2期475-487,共13页
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with... A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP. 展开更多
关键词 Nonconvex Schatten p-norm Low-rank Matrix Recovery p-Null Space Property the Restricted Isometry Property
下载PDF
Least-norm and Extremal Ranks of the Least Square Solution to the Quaternion Matrix Equation AXB = C Subject to Two Equations 被引量:1
2
作者 Yubao Bao 《Algebra Colloquium》 SCIE CSCD 2014年第3期449-460,共12页
In this paper, we give the expression of the least square solution of the linear quaternion matrix equation AXB = C subject to a consistent system of quaternion matrix equations D1X = F1, XE2 =F2, and derive the maxim... In this paper, we give the expression of the least square solution of the linear quaternion matrix equation AXB = C subject to a consistent system of quaternion matrix equations D1X = F1, XE2 =F2, and derive the maximal and minimal ranks and the leastnorm of the above mentioned solution. The finding of this paper extends some known results in the literature. 展开更多
关键词 quaternion matrix equation maximal rank minimal rank least square solu-tion least-norm
原文传递
效力位阶由条件关系决定吗?——兼论效力位阶与规范位阶的区别
3
作者 江辉 《中国人民大学学报》 CSSCI 北大核心 2024年第6期102-113,共12页
有观点认为,效力位阶由条件关系决定。《香港国安法》依据《香港基本法》制定,决定了前者效力低于后者。但效力高低区别于效力有无,条件关系仅决定效力有无而无法决定效力高低。人们常说的法律位阶,包括两类性质不同的事物。一是因效力... 有观点认为,效力位阶由条件关系决定。《香港国安法》依据《香港基本法》制定,决定了前者效力低于后者。但效力高低区别于效力有无,条件关系仅决定效力有无而无法决定效力高低。人们常说的法律位阶,包括两类性质不同的事物。一是因效力来源而产生的位阶效果,称为“规范位阶”;二是性质为冲突解决规则、内容为效力减损关系的效力位阶。条件关系可以决定规范位阶,但不能决定效力位阶。效力位阶的设置,由立法者综合考虑本国政治体制、历史传统等因素后选择,不受条件关系制约。虽然条件关系不决定规范间的效力高低,但能够影响效力位阶规则的适用。低位规范可基于条件关系继受取得其所依据的高位规范在高位法中的优先适用地位,从而优先于其他高位规范适用。 展开更多
关键词 条件关系 效力位阶 规范位阶 冲突解决规则 效力有无
原文传递
基于分块集成的图像聚类算法 被引量:3
4
作者 刘淑君 魏莱 《计算机科学》 CSCD 北大核心 2020年第6期170-175,共6页
基于谱聚类的子空间聚类算法已经显示出良好的效果,但是传统的子空间聚类算法需要将图像进行向量化处理,而这种向量化会导致图像本身携带的二维结构信息的丢失。为了减少这种信息的丢失,文中提出了基于分块集成的图像聚类算法(Block Int... 基于谱聚类的子空间聚类算法已经显示出良好的效果,但是传统的子空间聚类算法需要将图像进行向量化处理,而这种向量化会导致图像本身携带的二维结构信息的丢失。为了减少这种信息的丢失,文中提出了基于分块集成的图像聚类算法(Block Integration Based Image Clustering,BI-CI)。首先,将图像数据分为若干矩阵块;然后,利用核范数矩阵回归构造基于某一矩阵块的系数矩阵,同时提出了一种依据矩阵块秩信息设定各个矩阵块的权重方法;最后,通过每一系数矩阵及其所对应矩阵块的权重,得到整体系数矩阵。在此系数矩阵上,利用谱聚类算法得到最终的聚类结果。在4个图像数据集上的实验表明,相比现有算法,所提算法具有更强的鲁棒性,可以获得更优的聚类效果。 展开更多
关键词 子空间聚类 矩阵块 核范数 矩阵回归
下载PDF
一般矩阵元素扰动秩的一个定理 被引量:2
5
作者 胡永谟 《工科数学》 2001年第2期45-46,共2页
在文 [1 ]列满矩阵元素扰动秩的稳定性基础上 ,运用矩阵的范数 ,分析、研究一般矩阵 A∈Cm× nr元素扰动秩的问题 ,得出“存在 ε>0 ,只要 δA∈Cm× n,满足‖ δA‖ <ε,则有 A+δA∈∪nk=r Cm× nk ”的结论 .
关键词 矩阵 矩阵范数 扰动 相容性
下载PDF
On Real Matrices to Least-Squares g-Inverse and Minimum Norm g-Inverse of Quaternion Matrices
6
作者 Huasheng Zhang 《Advances in Linear Algebra & Matrix Theory》 2011年第1期1-7,共7页
Through the real representations of quaternion matrices and matrix rank method, we give the expression of the real ma-trices in least-squares g-inverse and minimum norm g-inverse. From these formulas, we derive the ex... Through the real representations of quaternion matrices and matrix rank method, we give the expression of the real ma-trices in least-squares g-inverse and minimum norm g-inverse. From these formulas, we derive the extreme ranks of the real matrices. As applications, we establish necessary and sufficient conditions for some special least-squares g-inverse and minimum norm g-inverse. 展开更多
关键词 Extreme rank g-Inverse LEAST-SQUARES g-Inverse Minimum norm g-Inverse QUATERNION Matrix
下载PDF
基于对数范数正则化矩阵分解的地震信号重建
7
作者 王艳艳 何静飞 +1 位作者 池越 何昊 《地球物理学进展》 CSCD 北大核心 2023年第6期2588-2598,共11页
降秩方法在地震信号重建和去噪中得到了广泛应用.传统的降秩方法可表述为秩最小化问题,通常采用核范数最小化凸松弛逼近秩函数,但核范数最小化对较大奇异值惩罚力度过重,破坏了有用信息.本文提出将对数范数正则化矩阵分解(LRMF)模型作... 降秩方法在地震信号重建和去噪中得到了广泛应用.传统的降秩方法可表述为秩最小化问题,通常采用核范数最小化凸松弛逼近秩函数,但核范数最小化对较大奇异值惩罚力度过重,破坏了有用信息.本文提出将对数范数正则化矩阵分解(LRMF)模型作为秩函数的非凸代理用于地震信号重建与去噪,对数范数能够更少地惩罚较大奇异值,而更多地惩罚较小奇异值,相比于核范数,非凸函数更逼近秩函数.同时,LRMF将对数范数正则化与矩阵分解结合在一起,以实现更高的计算效率.最后,利用具有收敛性证明的交替最小化框架来解决由此产生的优化问题.在合成地震数据和野外地震数据上的仿真结果都证明了所提方法在准确性和效率方面均优于核范数最小化和低秩矩阵拟合模型. 展开更多
关键词 矩阵补全 对数范数 矩阵分解 非凸优化 降秩
原文传递
IMPULSE NOISE REMOVAL BY L1 WEIGHTED NUCLEAR NORM MINIMIZATION
8
作者 Jian Lu Yuting Ye +2 位作者 Yiqiu Dong Xiaoxia Liu Yuru Zou 《Journal of Computational Mathematics》 SCIE CSCD 2023年第6期1171-1191,共21页
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minim... In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise. 展开更多
关键词 Image denoising Weighted nuclear norm minimization l 1-data-fidelity term Low rank analysis Impulse noise
原文传递
列满矩阵元素扰动秩的稳定性(英文) 被引量:1
9
作者 胡永谟 《工科数学》 2000年第1期51-54,共4页
秩是矩阵的重要数值特征之一 .本文运用矩阵的范数 ,分析、研究列满矩阵 ,提出并证明了列满矩阵元素扰动秩的稳定性定理及两个推论 .
关键词 列满矩阵 范数 扰动 相容性 稳定性 元素
下载PDF
Research on infrared dim and small target detection algorithm based on low-rank tensor recovery
10
作者 LIU Chuntong WANG Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期861-872,共12页
In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detectio... In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance. 展开更多
关键词 complex scene infrared block tensor tensor kernel norm low-rank tensor restoration weighted inverse entropy alternating direction method
下载PDF
基于σ范数和秩约束的相似矩阵学习算法 被引量:1
11
作者 杨婷 杨小飞 +1 位作者 马盈仓 汪义瑞 《纺织高校基础科学学报》 CAS 2020年第4期91-100,共10页
针对经典谱聚类算法中的相似矩阵固定,相似矩阵不能很好地反应数据结构,并且需要后处理才能得到聚类结果的问题,利用σ范数理论和交替迭代方法,提出一种新的基于σ范数和秩约束的相似矩阵学习算法(RSC-lσ)。通过σ正则项学习一个新的... 针对经典谱聚类算法中的相似矩阵固定,相似矩阵不能很好地反应数据结构,并且需要后处理才能得到聚类结果的问题,利用σ范数理论和交替迭代方法,提出一种新的基于σ范数和秩约束的相似矩阵学习算法(RSC-lσ)。通过σ正则项学习一个新的相似矩阵,然后对该矩阵的拉普拉斯矩阵施加秩约束,使得学习的相似矩阵恰好具有c个连通分支(c是预先指定的聚类个数),因而直接得出聚类结果。与l1范数和l2范数相比,σ范数能很好地消除离群点的影响,因而得到相似矩阵使得聚类结果具有较好的鲁棒性。实验表明:该算法在人工数据集和真实数据集上的聚类结果较其他聚类算法更加有效,而且能更好地处理非线性聚类问题。 展开更多
关键词 聚类 谱聚类 σ范数 秩约束 相似矩阵
下载PDF
Adaptive sparse and dense hybrid representation with nonconvex optimization
12
作者 Xuejun WANG Feilong CAO Wenjian WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2020年第4期65-78,共14页
Sparse representation has been widely used in signal processing,pattern recognition and computer vision etc.Excellent achievements have been made in both theoretical researches and practical applications.However,there... Sparse representation has been widely used in signal processing,pattern recognition and computer vision etc.Excellent achievements have been made in both theoretical researches and practical applications.However,there are two limitations on the application of classification.One is that sufficient training samples are required for each class,and the other is that samples should be uncorrupted.In order to alleviate above problems,a sparse and dense hybrid representation(SDR)framework has been proposed,where the training dictionary is decomposed into a class-specific dictionary and a non-class-specific dictionary.SDR putsℓ1 constraint on the coefficients of class-specific dictionary.Nevertheless,it over-emphasizes the sparsity and overlooks the correlation information in class-specific dictionary,which may lead to poor classification results.To overcome this disadvantage,an adaptive sparse and dense hybrid representation with non-convex optimization(ASDR-NO)is proposed in this paper.The trace norm is adopted in class-specific dictionary,which is different from general approaches.By doing so,the dictionary structure becomes adaptive and the representation ability of the dictionary will be improved.Meanwhile,a non-convex surrogate is used to approximate the rank function in dictionary decomposition in order to avoid a suboptimal solution of the original rank minimization,which can be solved by iteratively reweighted nuclear norm(IRNN)algorithm.Extensive experiments conducted on benchmark data sets have verified the effectiveness and advancement of the proposed algorithm compared with the state-of-the-art sparse representation methods. 展开更多
关键词 sparse representation trace norm nonconvex optimization low rank matrix recovery iteratively reweighted nuclear norm
原文传递
Degrees of freedom in low rank matrix estimation
13
作者 YUAN Ming 《Science China Mathematics》 SCIE CSCD 2016年第12期2485-2502,共18页
The objective of this paper is to quantify the complexity of rank and nuclear norm constrained methods for low rank matrix estimation problems. Specifically, we derive analytic forms of the degrees of freedom for thes... The objective of this paper is to quantify the complexity of rank and nuclear norm constrained methods for low rank matrix estimation problems. Specifically, we derive analytic forms of the degrees of freedom for these types of estimators in several common settings. These results provide efficient ways of comparing different estimators and eliciting tuning parameters. Moreover, our analyses reveal new insights on the behavior of these low rank matrix estimators. These observations are of great theoretical and practical importance. In particular, they suggest that, contrary to conventional wisdom, for rank constrained estimators the total number of free parameters underestimates the degrees of freedom, whereas for nuclear norm penalization, it overestimates the degrees of freedom. In addition, when using most model selection criteria to choose the tuning parameter for nuclear norm penalization, it oftentimes suffices to entertain a finite number of candidates as opposed to a continuum of choices. Numerical examples are also presented to illustrate the practical implications of our results. 展开更多
关键词 degrees of freedom low rank matrix approximation model selection nuclear norm penalization reduced rank regression Stein's unbiased risk estimator
原文传递
仿射秩最小化问题的一种解法
14
作者 王展梁 刘新国 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期142-146,共5页
低秩矩阵恢复问题在众多领域有重要应用。由于秩函数的复杂性,通常寻求其替代函数进而求解松弛问题。核范数是普遍使用的替代函数之一,但其恢复能力有限。本文提出了一种新的松弛模型用于求解低秩矩阵恢复问题,并给出了邻近梯度下降算法... 低秩矩阵恢复问题在众多领域有重要应用。由于秩函数的复杂性,通常寻求其替代函数进而求解松弛问题。核范数是普遍使用的替代函数之一,但其恢复能力有限。本文提出了一种新的松弛模型用于求解低秩矩阵恢复问题,并给出了邻近梯度下降算法,证明了算法的收敛性。实验数据表明模型的恢复能力远高于核范数模型。算法对于含噪声的情形同样适用,与核范数相比,仍然具有优越性。 展开更多
关键词 低秩矩阵 核范数 邻近算子 松弛模型 秩函数
下载PDF
Biquadratic tensors,biquadratic decompositions,and norms of biquadratic tensors
15
作者 Liqun QI Shenglong HU +1 位作者 Xinzhen ZHANG Yanwei XU 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第1期171-185,共15页
Biquadratic tensors play a central role in many areas of science.Examples include elastic tensor and Eshelby tensor in solid mechanics,and Riemannian curvature tensor in relativity theory.The singular values and spect... Biquadratic tensors play a central role in many areas of science.Examples include elastic tensor and Eshelby tensor in solid mechanics,and Riemannian curvature tensor in relativity theory.The singular values and spectral norm of a general third order tensor are the square roots of the M-eigenvalues and spectral norm of a biquadratic tensor,respectively.The tensor product operation is closed for biquadratic tensors.All of these motivate us to study biquadratic tensors,biquadratic decomposition,and norms of biquadratic tensors.We show that the spectral norm and nuclear norm for a biquadratic tensor may be computed by using its biquadratic structure.Then,either the number of variables is reduced,or the feasible region can be reduced.We show constructively that for a biquadratic tensor,a biquadratic rank-one decomposition always exists,and show that the biquadratic rank of a biquadratic tensor is preserved under an independent biquadratic Tucker decomposition.We present a lower bound and an upper bound of the nuclear norm of a biquadratic tensor.Finally,we define invertible biquadratic tensors,and present a lower bound for the product of the nuclear norms of an invertible biquadratic tensor and its inverse,and a lower bound for the product of the nuclear norm of an invertible biquadratic tensor,and the spectral norm of its inverse. 展开更多
关键词 Biquadratic tensor nuclear norm tensor product biquadratic rank-one decomposition biquadratic Tucker decomposition
原文传递
Double Transformed Tubal Nuclear Norm Minimization for Tensor Completion
16
作者 TIAN Jialue ZHU Yulian LIU Jiahui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期166-174,共9页
Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values ... Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods. 展开更多
关键词 double transformed tubal nuclear norm low tubal-rank non-convex optimization tensor factorization tensor completion
下载PDF
核范数最小化问题的非精确Halpern型邻近点算法(英文)
17
作者 范晓冬 王海军 《渤海大学学报(自然科学版)》 CAS 2013年第1期12-15,共4页
本文针对求解核范数极小矩阵优化问题给出一种新的可执行的非精确Halpern型邻近点算法,并证明该算法生成的迭代点列强收敛于起始点在解集上的投影.
关键词 邻近点算法 强收敛 核范数 矩阵最小秩问题 Halpern型算法
下载PDF
矩阵补全算法研究进展 被引量:14
18
作者 史加荣 郑秀云 周水生 《计算机科学》 CSCD 北大核心 2014年第4期13-20,共8页
作为压缩感知理论的重要发展,矩阵补全与恢复已成为信号与图像处理的一种新的强有力的工具。综述了矩阵补全算法的最新研究进展。首先分析了核范数最小化模型的几种主要的矩阵补全算法,并对这些算法的迭代过程及原理进行了详细的阐述。... 作为压缩感知理论的重要发展,矩阵补全与恢复已成为信号与图像处理的一种新的强有力的工具。综述了矩阵补全算法的最新研究进展。首先分析了核范数最小化模型的几种主要的矩阵补全算法,并对这些算法的迭代过程及原理进行了详细的阐述。其次讨论了矩阵补全的低秩矩阵分解模型,并列出了近年来出现的求解此模型的新算法。然后补充了上述两种模型的衍生版本,指出了相应的求解方法。在数值实验中,对文中所讨论的主要矩阵补全算法的性能进行了比较。最后给出了矩阵补全算法的未来研究方向及重点。 展开更多
关键词 矩阵补全 低秩 核范数最小化 低秩矩阵分解 压缩感知 低秩矩阵恢复
下载PDF
基于S_(1/2)建模的稳健稀疏–低秩矩阵分解 被引量:14
19
作者 饶过 彭毅 徐宗本 《中国科学:信息科学》 CSCD 2013年第6期733-748,共16页
为实现稳健的稀疏–低秩矩阵分解,本文首次引入矩阵的S1/2范数以诱导矩阵的低秩性来构建新模型,并在ADMM算法框架下设计了高效的交替阈值迭代算法.该算法采用增广Lagrange乘子技术,在迭代过程中交替更新低秩矩阵和稀疏矩阵.由于这两个... 为实现稳健的稀疏–低秩矩阵分解,本文首次引入矩阵的S1/2范数以诱导矩阵的低秩性来构建新模型,并在ADMM算法框架下设计了高效的交替阈值迭代算法.该算法采用增广Lagrange乘子技术,在迭代过程中交替更新低秩矩阵和稀疏矩阵.由于这两个矩阵的最优更新具有显式形式,算法整体的计算精度和时间代价得以控制.大量的数值模拟实验说明:相较于目前最好的不精确ALM算法,交替阈值迭代算法的迭代次数与时间代价大幅降低,对噪声更为稳健,分解出的低秩矩阵的秩与稀疏矩阵的稀疏度更接近于真实值.在对监控视频进行背景建模这一实际问题中,交替阈值迭代算法得到的背景矩阵更为低秩,更符合问题先验,且时间代价相较于不精确ALM算法降幅高达一个数量级,这说明新模型与算法能有效解决相关实际问题. 展开更多
关键词 S1 2范数 稀疏-低秩矩阵分解 快速稳健 交替阈值迭代
原文传递
保持局部结构的加权核范数最小化图像去噪 被引量:9
20
作者 吕俊瑞 罗学刚 +1 位作者 岐世峰 彭真明 《激光与光电子学进展》 CSCD 北大核心 2019年第16期57-64,共8页
为解决加权核范数最小化(WNNM)图像去噪无法较好地表达复杂和不规则的图像结构,易产生过平滑现象的问题,将相对全变差(RTV)融入加权核范数最小化,对WNNM低秩表示模型施加RTV范数约束,提出一种RTV-WNNM图像去噪模型,采取交替方向乘子(AD... 为解决加权核范数最小化(WNNM)图像去噪无法较好地表达复杂和不规则的图像结构,易产生过平滑现象的问题,将相对全变差(RTV)融入加权核范数最小化,对WNNM低秩表示模型施加RTV范数约束,提出一种RTV-WNNM图像去噪模型,采取交替方向乘子(ADMM)算法迭代求解对应模型,获得清晰图像。将提出的新方法与多种基于低秩矩阵近似的去噪算法进行比较,所提算法在保持图像边缘和加强区域平滑性方面有较好的性能,特别是在高密度图像噪声影响下,算法性能也能得到大幅提升。实验结果表明,加入RTV范数的低秩去噪模型具有良好的恢复图像结构能力,能较好地提高去噪性能。 展开更多
关键词 图像处理 加权核范数最小化 图像去噪 低秩矩阵近似 相对全变差范数
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部