The objective of this article is to demonstrate with examples that the two-sided tie correction does not work well. This correction was developed by Cureton so that Kendall’s tau-type and Spearman’s rho-type formula...The objective of this article is to demonstrate with examples that the two-sided tie correction does not work well. This correction was developed by Cureton so that Kendall’s tau-type and Spearman’s rho-type formulas for rank-biserial correlation yield the same result when ties are present. However, a correction based on the bracket ties achieves the desired goal, which is demonstrated algebraically and checked with three examples. On the one hand, the 10-element random sample given by Cureton, in which the two-sided tie correction performs well, is taken up. On the other hand, two other examples are given, one with a 7-element random sample and the other with a clinical random sample of 31 participants, in which the two-sided tie correction does not work, but the new correction does. It is concluded that the new corrected formulas coincide with Goodman-Kruskal’s gamma as compared to Glass’ formula that matches Somers’ d<sub>Y</sub><sub>|X</sub> or asymmetric measure of association of Y ranking with respect to X dichotomy. The use of this underreported coefficient is suggested, which is very easy to calculate from its equivalence with Kruskal-Wallis’ gamma and Somers’ d<sub>Y</sub><sub>|X</sub>.展开更多
文摘The objective of this article is to demonstrate with examples that the two-sided tie correction does not work well. This correction was developed by Cureton so that Kendall’s tau-type and Spearman’s rho-type formulas for rank-biserial correlation yield the same result when ties are present. However, a correction based on the bracket ties achieves the desired goal, which is demonstrated algebraically and checked with three examples. On the one hand, the 10-element random sample given by Cureton, in which the two-sided tie correction performs well, is taken up. On the other hand, two other examples are given, one with a 7-element random sample and the other with a clinical random sample of 31 participants, in which the two-sided tie correction does not work, but the new correction does. It is concluded that the new corrected formulas coincide with Goodman-Kruskal’s gamma as compared to Glass’ formula that matches Somers’ d<sub>Y</sub><sub>|X</sub> or asymmetric measure of association of Y ranking with respect to X dichotomy. The use of this underreported coefficient is suggested, which is very easy to calculate from its equivalence with Kruskal-Wallis’ gamma and Somers’ d<sub>Y</sub><sub>|X</sub>.