The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations o...The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations of linear, homogeneous, isotropic, nonlocal elastic solids展开更多
In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions. The critical exponent is determined ...In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions. The critical exponent is determined under various situations of the weight functions. It is observed that the boundary weight functions play an important role in determining the blow-up conditions. In addition, the blow-up rate estimate of non-global solutions for a class of weight functions is also obtained, which is found to be independent of nonlinear diffusion parameters m and n.展开更多
We investigate the existence of nonnegative solutions for a Riemann-Liouville fractional differential equation with integral terms, subject to boundary conditions which contain fractional derivatives and Riemann-Stiel...We investigate the existence of nonnegative solutions for a Riemann-Liouville fractional differential equation with integral terms, subject to boundary conditions which contain fractional derivatives and Riemann-Stieltjes integrals. In the proof of the main results, we use the Banach contraction mapping principle and the Krasnosel’skii fixed point theorem for the sum of two operators.展开更多
In this work, a highly efficient algorithm is developed for solving the parabolic partial differential equation (PDE) with the nonlocal condition. For this purpose, we employ orthogonal Chelyshkov polynomials as the b...In this work, a highly efficient algorithm is developed for solving the parabolic partial differential equation (PDE) with the nonlocal condition. For this purpose, we employ orthogonal Chelyshkov polynomials as the basis. The convergence analysis of the proposed scheme is derived. Numerical experiments are carried out to explain the efficiency and precision of the proposed scheme. Furthermore, the reliability of the scheme is verified by comparisons with assured existing methods.展开更多
In this paper, we study a class of Prigozhin equation for growing sandpile problem subject to local and a non-local boundary condition. The problem is a generalized model for a growing sandpile problem with Neumann bo...In this paper, we study a class of Prigozhin equation for growing sandpile problem subject to local and a non-local boundary condition. The problem is a generalized model for a growing sandpile problem with Neumann boundary condition (see <a href="#ref1">[1]</a>). By the semi-group theory, we prove the existence and uniqueness of the solution for the model and thanks to a duality method we do the numerical analysis of the problem. We finish our work by doing numerical simulations to validate our theoretical results.展开更多
基金Project supported by the National Natural Science Foundation of China
文摘The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations of linear, homogeneous, isotropic, nonlocal elastic solids
基金Supported by the National Natural Science Foundation of China (Grant No. 11171048)
文摘In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions. The critical exponent is determined under various situations of the weight functions. It is observed that the boundary weight functions play an important role in determining the blow-up conditions. In addition, the blow-up rate estimate of non-global solutions for a class of weight functions is also obtained, which is found to be independent of nonlinear diffusion parameters m and n.
文摘We investigate the existence of nonnegative solutions for a Riemann-Liouville fractional differential equation with integral terms, subject to boundary conditions which contain fractional derivatives and Riemann-Stieltjes integrals. In the proof of the main results, we use the Banach contraction mapping principle and the Krasnosel’skii fixed point theorem for the sum of two operators.
文摘In this work, a highly efficient algorithm is developed for solving the parabolic partial differential equation (PDE) with the nonlocal condition. For this purpose, we employ orthogonal Chelyshkov polynomials as the basis. The convergence analysis of the proposed scheme is derived. Numerical experiments are carried out to explain the efficiency and precision of the proposed scheme. Furthermore, the reliability of the scheme is verified by comparisons with assured existing methods.
文摘In this paper, we study a class of Prigozhin equation for growing sandpile problem subject to local and a non-local boundary condition. The problem is a generalized model for a growing sandpile problem with Neumann boundary condition (see <a href="#ref1">[1]</a>). By the semi-group theory, we prove the existence and uniqueness of the solution for the model and thanks to a duality method we do the numerical analysis of the problem. We finish our work by doing numerical simulations to validate our theoretical results.
基金Supported by the Nature Science Foundation of Heilongjiang Province(A201015)the Scientific Research Foundation of the Education Department of Heilongjiang Province(11541098)the Doctorial Fund of Harbin Normal University(KGB200901)