We consider nonlinear parabolic equations with nonlinear non-Lipschitz's term and singular initial data like Dirac measure, its derivatives and powers. We prove existence-uniqueness theorems in Colombeau vector space...We consider nonlinear parabolic equations with nonlinear non-Lipschitz's term and singular initial data like Dirac measure, its derivatives and powers. We prove existence-uniqueness theorems in Colombeau vector space yC^1,W^2,2([0,T),R^n),n ≤ 3. Due to high singularity in a case of parabolic equation with nonlinear conservative term we employ the regularized derivative for the conservative term, in order to obtain the global existence-uniqueness result in Colombeau vector space yC^1,L^2([0,T),R^n),n≤ 3.展开更多
In this paper, we consider a class of nonlinear vector differential equations of sixth order. By constructing appropriate Lyapunov functions, the non-existence of periodic solutions is established. Moreover, we provid...In this paper, we consider a class of nonlinear vector differential equations of sixth order. By constructing appropriate Lyapunov functions, the non-existence of periodic solutions is established. Moreover, we provide an example to show the feasibility of our results. Our results extend and improve two related results in the previous literature from scalar cases to vectorial cases.展开更多
This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous liter...This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.展开更多
The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solutio...The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solution obtained in the iterative process is always difficult, even divergent due to the numerical instability. It can not fulfill the engineering requirements. Newton's method and its variants can not settle this problem. As a result, the application of numerical simulation for the strongly nonlinear problems is limited. An auto-adjustable damping method has been presented in this paper. This is a further improvement of Newton's method with damping factor. A set of vector of damping factor is introduced. This set of vector can be adjusted continuously during the iterative process in accordance with the judgement and adjustment. An effective convergence coefficient and quichening coefficient are employed to relax the restricted requirements for the initial values and to shorten the iterative process. Then, the numerical stability will be ensured for the solution of complicated strongly nonlinear equations. Using this method, some complicated strongly nonlinear heat transfer problems in airplanes and aeroengines have been numerically simulated successfully. It can be used for the numerical simulation of strongly nonlinear problems in engineering such as nonlinear hydrodynamics and aerodynamics, heat transfer and structural dynamic response etc.展开更多
This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,exis...This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,existence and uniqueness of solutions are obtained by using upper and lower solutions method.展开更多
In this paper,some existence results for the fourth order nonlinear subelliptic equations on the Heisenberg group are given by means of variational methods.
A variable-coefficient coupled nonlinear Schrodinger equation in an averaged dispersion-managed birefringent fiber is investigated. Based on the one-to-one correspondence between variable-coefficient and constant-coef...A variable-coefficient coupled nonlinear Schrodinger equation in an averaged dispersion-managed birefringent fiber is investigated. Based on the one-to-one correspondence between variable-coefficient and constant-coefficient equations, an analytical breather solution is derived. As an example to exhibit dynamical behaviors of solution, its controllable excitations including rear excitation, peak excitation and initial excitation are discussed.展开更多
基金Supported by Ministry of Science of Republic Serbia
文摘We consider nonlinear parabolic equations with nonlinear non-Lipschitz's term and singular initial data like Dirac measure, its derivatives and powers. We prove existence-uniqueness theorems in Colombeau vector space yC^1,W^2,2([0,T),R^n),n ≤ 3. Due to high singularity in a case of parabolic equation with nonlinear conservative term we employ the regularized derivative for the conservative term, in order to obtain the global existence-uniqueness result in Colombeau vector space yC^1,L^2([0,T),R^n),n≤ 3.
文摘In this paper, we consider a class of nonlinear vector differential equations of sixth order. By constructing appropriate Lyapunov functions, the non-existence of periodic solutions is established. Moreover, we provide an example to show the feasibility of our results. Our results extend and improve two related results in the previous literature from scalar cases to vectorial cases.
文摘This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.
文摘The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solution obtained in the iterative process is always difficult, even divergent due to the numerical instability. It can not fulfill the engineering requirements. Newton's method and its variants can not settle this problem. As a result, the application of numerical simulation for the strongly nonlinear problems is limited. An auto-adjustable damping method has been presented in this paper. This is a further improvement of Newton's method with damping factor. A set of vector of damping factor is introduced. This set of vector can be adjusted continuously during the iterative process in accordance with the judgement and adjustment. An effective convergence coefficient and quichening coefficient are employed to relax the restricted requirements for the initial values and to shorten the iterative process. Then, the numerical stability will be ensured for the solution of complicated strongly nonlinear equations. Using this method, some complicated strongly nonlinear heat transfer problems in airplanes and aeroengines have been numerically simulated successfully. It can be used for the numerical simulation of strongly nonlinear problems in engineering such as nonlinear hydrodynamics and aerodynamics, heat transfer and structural dynamic response etc.
文摘This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,existence and uniqueness of solutions are obtained by using upper and lower solutions method.
文摘In this paper,some existence results for the fourth order nonlinear subelliptic equations on the Heisenberg group are given by means of variational methods.
基金Supported by the Science and Technology Department of Henan Province under Grant No.142300410043by the Education Department of Henan Province under Grant No.13A140113
文摘A variable-coefficient coupled nonlinear Schrodinger equation in an averaged dispersion-managed birefringent fiber is investigated. Based on the one-to-one correspondence between variable-coefficient and constant-coefficient equations, an analytical breather solution is derived. As an example to exhibit dynamical behaviors of solution, its controllable excitations including rear excitation, peak excitation and initial excitation are discussed.