飞轮是卫星姿态控制系统中的主要执行部件,实现其自主故障检测与恢复对于维持卫星正常姿态具有很重要的意义.在建立了精确飞轮开环系统模型的基础上,设计了二阶非线性连续扩张状态观测器ESO(Extended State Observer).将飞轮故障视为系...飞轮是卫星姿态控制系统中的主要执行部件,实现其自主故障检测与恢复对于维持卫星正常姿态具有很重要的意义.在建立了精确飞轮开环系统模型的基础上,设计了二阶非线性连续扩张状态观测器ESO(Extended State Observer).将飞轮故障视为系统外扰,并假设其余外扰是小量可忽略,则利用此ESO不仅能实时得到飞轮开环系统的状态量,当飞轮发生故障时更能快速准确地估计出故障量.因而无需产生系统残差即可直接进行故障检测,同时根据故障量的大小对系统输入即驱动电压进行补偿,使飞轮转速仍能维持正常值,保证卫星姿态不受故障影响.数值仿真验证了此方法的有效性.展开更多
The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vecto...The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vector, and nonlinear aerodynamics. Moreover, the autopilot should be designed for the entire flight envelope where fast variations exist. In this paper, a design of integrated roll-pitch-yaw autopilot based on global fast terminal sliding mode control (GFTSMC) with a partial state nonlinear observer (PSNLO) for STT nonlinear time-varying missile model, is employed to address these issues. GFTSMC with a novel sliding surface is proposed to nullify the integral error and the singularity problem without application of the sign function. The proposed autopilot consisting of two-loop structure, controls STT maneuver and stabilizes the rolling with a PSNLO in order to estimate the immeasurable states as an output while its inputs are missile measurable states and control signals. The missile model considers the velocity variation, gravity effect and parameters' variation. Furthermore, the environmental conditions' dynamics are mod- eled. PSNLO stability and the closed loop system stability are studied. Finally, numerical simulation is established to evaluate the proposed autopilot performance and to compare it with existing approaches in the literature.展开更多
In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performance...In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performances of rapidly-varying faults estimation. Only original system matrices are adopted in the parameter design. The considered faults can be unbounded, and the proposed augmented observer can estimate a large class of faults. Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered, followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded. For the considered nonlinear system, convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method. Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system. The mance in estimating states and actuator faults. It also successfully. simulation results show satisfactory perfor- shows that multiple faults can be estimated展开更多
In this paper, a full-order sliding mode control based on extended state observer(FSMC+ESO) is proposed for high-order nonlinear system with unknown system states and uncertainties.The extended state observer(ESO) is ...In this paper, a full-order sliding mode control based on extended state observer(FSMC+ESO) is proposed for high-order nonlinear system with unknown system states and uncertainties.The extended state observer(ESO) is employed to estimate both the unknown system states and uncertainties so that the restriction that the system states should be completely measurable is relaxed,and a full-order sliding mode controller is designed based on the ESO estimation to overcome the chattering problem existing in ordinary reduced-order sliding mode control. Simulation results show that the proposed method facilitates the practical application with respect to good tracking performance and chattering elimination.展开更多
文摘飞轮是卫星姿态控制系统中的主要执行部件,实现其自主故障检测与恢复对于维持卫星正常姿态具有很重要的意义.在建立了精确飞轮开环系统模型的基础上,设计了二阶非线性连续扩张状态观测器ESO(Extended State Observer).将飞轮故障视为系统外扰,并假设其余外扰是小量可忽略,则利用此ESO不仅能实时得到飞轮开环系统的状态量,当飞轮发生故障时更能快速准确地估计出故障量.因而无需产生系统残差即可直接进行故障检测,同时根据故障量的大小对系统输入即驱动电压进行补偿,使飞轮转速仍能维持正常值,保证卫星姿态不受故障影响.数值仿真验证了此方法的有效性.
基金co-supported by the National Natural Science Foundation of China (No.61304077)International Science & Technology Cooperation Program of China (No.2015DFA01710)+3 种基金the Natural Science Foundation of Jiangsu Province of China (No.BK20130765)the Chinese Ministry of Education Project of Humanities and Social Sciences (No.13YJCZH171)the 11th Jiangsu Province Six Talent Peaks of High Level Talents Project of China (No.2014_ZBZZ_005)the Jiangsu Province Project Blue: Young Academic Leaders Project
文摘The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vector, and nonlinear aerodynamics. Moreover, the autopilot should be designed for the entire flight envelope where fast variations exist. In this paper, a design of integrated roll-pitch-yaw autopilot based on global fast terminal sliding mode control (GFTSMC) with a partial state nonlinear observer (PSNLO) for STT nonlinear time-varying missile model, is employed to address these issues. GFTSMC with a novel sliding surface is proposed to nullify the integral error and the singularity problem without application of the sign function. The proposed autopilot consisting of two-loop structure, controls STT maneuver and stabilizes the rolling with a PSNLO in order to estimate the immeasurable states as an output while its inputs are missile measurable states and control signals. The missile model considers the velocity variation, gravity effect and parameters' variation. Furthermore, the environmental conditions' dynamics are mod- eled. PSNLO stability and the closed loop system stability are studied. Finally, numerical simulation is established to evaluate the proposed autopilot performance and to compare it with existing approaches in the literature.
基金supported by the National Basic Research Program of China(No.2012CB720003)the National Natural Science Foundation of China(No.61203151)
文摘In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performances of rapidly-varying faults estimation. Only original system matrices are adopted in the parameter design. The considered faults can be unbounded, and the proposed augmented observer can estimate a large class of faults. Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered, followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded. For the considered nonlinear system, convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method. Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system. The mance in estimating states and actuator faults. It also successfully. simulation results show satisfactory perfor- shows that multiple faults can be estimated
基金supported by the National Natural Science Foundation of China under Grant No.61403343the China Postdoctoral Science Foundation funded project under Grant No.2015M580521
文摘In this paper, a full-order sliding mode control based on extended state observer(FSMC+ESO) is proposed for high-order nonlinear system with unknown system states and uncertainties.The extended state observer(ESO) is employed to estimate both the unknown system states and uncertainties so that the restriction that the system states should be completely measurable is relaxed,and a full-order sliding mode controller is designed based on the ESO estimation to overcome the chattering problem existing in ordinary reduced-order sliding mode control. Simulation results show that the proposed method facilitates the practical application with respect to good tracking performance and chattering elimination.