In this paper, we study a kind of the delayed SEIQR infectious disease model with the quarantine and latent, and get the threshold value which determines the global dynamics and the outcome of the disease. The model h...In this paper, we study a kind of the delayed SEIQR infectious disease model with the quarantine and latent, and get the threshold value which determines the global dynamics and the outcome of the disease. The model has a disease-free equilibrium which is unstable when the basic reproduction number is greater than unity. At the same time, it has a unique endemic equilibrium when the basic reproduction number is greater than unity. According to the mathematical dynamics analysis, we show that disease-free equilibrium and endemic equilibrium are locally asymptotically stable by using Hurwitz criterion and they are globally asymptotically stable by using suitable Lyapunov functions for any Besides, the SEIQR model with nonlinear incidence rate is studied, and the that the basic reproduction number is a unity can be found out. Finally, numerical simulations are performed to illustrate and verify the conclusions that will be useful for us to control the spread of infectious diseases. Meanwhile, the will effect changing trends of in system (1), which is obvious in simulations. Here, we take as an example to explain that.展开更多
In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start wi...In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.展开更多
文摘In this paper, we study a kind of the delayed SEIQR infectious disease model with the quarantine and latent, and get the threshold value which determines the global dynamics and the outcome of the disease. The model has a disease-free equilibrium which is unstable when the basic reproduction number is greater than unity. At the same time, it has a unique endemic equilibrium when the basic reproduction number is greater than unity. According to the mathematical dynamics analysis, we show that disease-free equilibrium and endemic equilibrium are locally asymptotically stable by using Hurwitz criterion and they are globally asymptotically stable by using suitable Lyapunov functions for any Besides, the SEIQR model with nonlinear incidence rate is studied, and the that the basic reproduction number is a unity can be found out. Finally, numerical simulations are performed to illustrate and verify the conclusions that will be useful for us to control the spread of infectious diseases. Meanwhile, the will effect changing trends of in system (1), which is obvious in simulations. Here, we take as an example to explain that.
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.
文摘In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.