We investigate the impulsive synchronization of a nonlinear coupled complex network with a delay node. Both delay coupling and non-delay coupling, as well as the symmetrical coupling matrix and the asymmetrical coupli...We investigate the impulsive synchronization of a nonlinear coupled complex network with a delay node. Both delay coupling and non-delay coupling, as well as the symmetrical coupling matrix and the asymmetrical coupling matrix are considered. Based on the comparison theorem of an impulsive differential system, some novel synchronization criteria are derived. Finally, numerical simulations demonstrate the effectiveness of the proposed synchronization criteria.展开更多
The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the g...The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.展开更多
基金Project supported by the Young Project of Hubei Provincial Department of Education,China(Grant No.Q20111309)the Key Program of Hubei Provincial Department of Education,China(Grant No.D20101304)
文摘We investigate the impulsive synchronization of a nonlinear coupled complex network with a delay node. Both delay coupling and non-delay coupling, as well as the symmetrical coupling matrix and the asymmetrical coupling matrix are considered. Based on the comparison theorem of an impulsive differential system, some novel synchronization criteria are derived. Finally, numerical simulations demonstrate the effectiveness of the proposed synchronization criteria.
基金supported by the National Natural Science Foundation of China (6090402060574006)the Research Fund for the Doctoral Program of Higher Eolucation of China (20070286039)
文摘The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.