期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一类偶数阶非线性中立型偏微分方程组的振动判据 被引量:3
1
作者 罗李平 杨柳 王艳群 《海军工程大学学报》 CAS 北大核心 2008年第2期17-21,共5页
讨论一类偶数阶非线性中立型偏微分方程组的振动性,利用Green公式和边值条件将这类非线性中立型偏微分方程组的振动问题转化为中立型微分不等式不存在最终正解的问题,并利用最终正解的定义和微分不等式方法,获得了该类方程组在两类不同... 讨论一类偶数阶非线性中立型偏微分方程组的振动性,利用Green公式和边值条件将这类非线性中立型偏微分方程组的振动问题转化为中立型微分不等式不存在最终正解的问题,并利用最终正解的定义和微分不等式方法,获得了该类方程组在两类不同边值条件下所有解振动的若干充分性条件。所得结果为解决物理学、生物学、工程学等学科领域中的实际问题提供了数学理论基础。 展开更多
关键词 偶数阶 非线性 中立型 偏微分方程组 振动性
下载PDF
Numerical Solution of Nonlinear System of Partial Differential Equations by the Laplace Decomposition Method and the Pade Approximation
2
作者 Magdy Ahmed Mohamed Mohamed Shibl Torky 《American Journal of Computational Mathematics》 2013年第3期175-184,共10页
In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and ... In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions. 展开更多
关键词 nonlinear system of partial differential equations The LAPLACE Decomposition Method The Pade Approximation The COUPLED system of the Approximate equations for Long WATER Waves The Whitham Broer Kaup Shallow WATER Model The system of Hirota-Satsuma COUPLED KdV
下载PDF
ECONOMICAL DIFFERENCE SCHEME FOR ONE MULTI-DIMENSIONAL NONLINEAR SYSTEM
3
作者 Temur JANGVELADZE Zurab KIGURADZE Mikheil GAGOSHIDZE 《Acta Mathematica Scientia》 SCIE CSCD 2019年第4期971-988,共18页
The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference ... The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given. 展开更多
关键词 system of nonlinear partial differential equations variable DIRECTIONS finite DIFFERENCE scheme stability and convergence numerical resolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部