This is the second of two consecutive papers focusing on the filtering algorithm for a nonlinear stochastic discretetime system with linear system state equation. The first paper established a derivative unscented Kal...This is the second of two consecutive papers focusing on the filtering algorithm for a nonlinear stochastic discretetime system with linear system state equation. The first paper established a derivative unscented Kalman filter(DUKF) to eliminate the redundant computational load of the unscented Kalman filter(UKF) due to the use of unscented transformation(UT) in the prediction process. The present paper studies the error behavior of the DUKF using the boundedness property of stochastic processes. It is proved that the estimation error of the DUKF remains bounded if the system satisfies certain conditions. Furthermore, it is shown that the design of the measurement noise covariance matrix plays an important role in improvement of the algorithm stability. The DUKF can be significantly stabilized by adding small quantities to the measurement noise covariance matrix in the presence of large initial error. Simulation results demonstrate the effectiveness of the proposed technique.展开更多
A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measure...A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained.展开更多
Abstract A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampi...Abstract A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged It6 stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The final dynamical programming equations for these control problems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynamical programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illustrate the application and effectiveness of the proposed control strategy.展开更多
A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises, whose exact stationary solutions are independent of ene...A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises, whose exact stationary solutions are independent of energy. Firstly, the equivalent Fokker-Planck-Kolmogorov (FPK) equations are derived by using exterior differentiation. The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix. Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix. The obtained exact stationary solutions, which are generally independent of energy, are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom (MDOF) so far, and some classes of the known ones dependent on energy belong to the special cases of them.展开更多
An efficient model of nonlinear stochastic systems that can use on initial batch of data is developed using orthogonal estimation including the error reduction test and other monitoring modifications. A recursive iden...An efficient model of nonlinear stochastic systems that can use on initial batch of data is developed using orthogonal estimation including the error reduction test and other monitoring modifications. A recursive identification on line algorithm is implemented to track the nonlinear time variable process. The ELS algorithm is proposed for the parameters, and the nonlinear adaptive controller is designed by the ELS algorithm. The convergence rate of the parameter estimation and the adaptive tracking are established. 展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61174193)the Doctorate Foundation of Northwestern Polytechnical University,China(Grant No.CX201409)
文摘This is the second of two consecutive papers focusing on the filtering algorithm for a nonlinear stochastic discretetime system with linear system state equation. The first paper established a derivative unscented Kalman filter(DUKF) to eliminate the redundant computational load of the unscented Kalman filter(UKF) due to the use of unscented transformation(UT) in the prediction process. The present paper studies the error behavior of the DUKF using the boundedness property of stochastic processes. It is proved that the estimation error of the DUKF remains bounded if the system satisfies certain conditions. Furthermore, it is shown that the design of the measurement noise covariance matrix plays an important role in improvement of the algorithm stability. The DUKF can be significantly stabilized by adding small quantities to the measurement noise covariance matrix in the presence of large initial error. Simulation results demonstrate the effectiveness of the proposed technique.
基金supported by the UK Leverhulme Trust (F/00 120/BC)the National Natural Science Foundation of China (6082800760974029)
文摘A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained.
基金The project supported by the National Natural Science Foundation of China(10332030)the Special Fund for Doctor Programs in Institutions of Higher Learning of China(20060335125)
文摘Abstract A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged It6 stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The final dynamical programming equations for these control problems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynamical programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illustrate the application and effectiveness of the proposed control strategy.
基金Supported by the National Natural Science Foundation of China (Grant No. 10672142) the Program for New Century Excellent Talents in University
文摘A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises, whose exact stationary solutions are independent of energy. Firstly, the equivalent Fokker-Planck-Kolmogorov (FPK) equations are derived by using exterior differentiation. The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix. Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix. The obtained exact stationary solutions, which are generally independent of energy, are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom (MDOF) so far, and some classes of the known ones dependent on energy belong to the special cases of them.
文摘An efficient model of nonlinear stochastic systems that can use on initial batch of data is developed using orthogonal estimation including the error reduction test and other monitoring modifications. A recursive identification on line algorithm is implemented to track the nonlinear time variable process. The ELS algorithm is proposed for the parameters, and the nonlinear adaptive controller is designed by the ELS algorithm. The convergence rate of the parameter estimation and the adaptive tracking are established.