As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of...As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of a charged ring (being a localized charge distribution) along its symmetry axis perpendicular to the ring through its center rather than as expected being a diminishing field encounters a local maximum bump. It is the objective of this research-oriented study to analyze the impact of this bump on the characteristics of a massive point-like charged particle oscillating along the symmetry axis. Two scenarios with and without gravity along the symmetry axis are considered. In addition to standard kinematic diagrams, various phase diagrams conducive to a better understanding are constructed. Applying Computer Algebra System (CAS), [1] [2] most calculations are carried out symbolically. Finally, by assigning a set of reasonable numeric parameters to the symbolic quantities various 3D animations are crafted. All the CAS codes are included.展开更多
This paper presents a Shared Control Architecture(SCA)between a human pilot and a smart inceptor for nonlinear Pilot Induced Oscillations(PIOs),e.g.,category II or III PIOs.One innovation of this paper is that an inte...This paper presents a Shared Control Architecture(SCA)between a human pilot and a smart inceptor for nonlinear Pilot Induced Oscillations(PIOs),e.g.,category II or III PIOs.One innovation of this paper is that an intelligent shared control architecture is developed based on the intelligent active inceptor technique,i.e.,Smart Adaptive Flight Effective Cue(SAFE-Cue).A deep reinforcement learning approach namely Deep Deterministic Policy Gradient(DDPG)method is chosen to design a gain adaptation mechanism for the SAFE-Cue module.By doing this,the gains of the SAFE-Cue will be intelligently tuned once nonlinear PIOs triggered;meanwhile,the human pilot will receive a force cue from the SAFE-Cue,and will consequently adapting his/her control policy.The second innovation of this paper is that the reward function of the DDPG based gain adaptation approach is constructed according to flying qualities.Under the premise of considering failure situation,task completion qualities and pilot workload are also taken into account.Finally,the proposed approach is validated using numerical simulation experiments with two types of scenarios:lower actuator rate limits and airframe damages.The Inceptor Peak Power-Phase(IPPP)metric is adopted to analyze the human-vehicle system simulation results.Results and analysis show that the DDPG based sharing control approach can well address nonlinear PIO problems consisting of Categories Ⅱ and Ⅲ PIO events.展开更多
Chiral anomaly is a distinct quantum anomaly associated with chiral fermions in Dirac or Weyl semimetals.The use of negative magnetoresistance(negative MR)as a signature for this anomaly remains contentious,as trivial...Chiral anomaly is a distinct quantum anomaly associated with chiral fermions in Dirac or Weyl semimetals.The use of negative magnetoresistance(negative MR)as a signature for this anomaly remains contentious,as trivial mechanisms such as current jetting and weak localization can also induce negative MR.In this study,we report a novel nonlinear behavior of the chiral anomaly in the longitudinal direction,which we observed by applying parallel current and magnetic field to the Dirac semimetal Cd_(3)A_(s_(2)).This nonlinear characteristic peaks at an intermediate magnetic field of approximately5 T,displaying a resistance-increasing property concomitant with strengthening of the current source.Through angledependence experiments,we were able to rule out trivial factors,such as thermal effects,geometric artifacts,and anisotropy.Furthermore,additional electric quantum oscillations were observed when the direct current(DC)was applied as high as300μA.Such an unusual phenomenon is ascribed to the formation of quantized levels due to Bloch oscillation in the high DC regime,suggesting that an oscillatory density distribution may arise as the electric field increases.The non-Ohmic electric quantum oscillations open a new avenue for exploring chiral anomaly and other nontrivial topological properties,which is also one of the salient features of nonequilibrium steady states in condensed matter physics.展开更多
The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the syst...The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used, ar an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing techniques of control to subharmonic instability of large rotating machinery.展开更多
文摘As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of a charged ring (being a localized charge distribution) along its symmetry axis perpendicular to the ring through its center rather than as expected being a diminishing field encounters a local maximum bump. It is the objective of this research-oriented study to analyze the impact of this bump on the characteristics of a massive point-like charged particle oscillating along the symmetry axis. Two scenarios with and without gravity along the symmetry axis are considered. In addition to standard kinematic diagrams, various phase diagrams conducive to a better understanding are constructed. Applying Computer Algebra System (CAS), [1] [2] most calculations are carried out symbolically. Finally, by assigning a set of reasonable numeric parameters to the symbolic quantities various 3D animations are crafted. All the CAS codes are included.
基金co-supported by the Fundamental Research Funds for the Central Universities of China(No.YWF-23-SDHK-L-005)the 1912 Project,China and the Aeronautical Science Foundation of China(No.20220048051001).
文摘This paper presents a Shared Control Architecture(SCA)between a human pilot and a smart inceptor for nonlinear Pilot Induced Oscillations(PIOs),e.g.,category II or III PIOs.One innovation of this paper is that an intelligent shared control architecture is developed based on the intelligent active inceptor technique,i.e.,Smart Adaptive Flight Effective Cue(SAFE-Cue).A deep reinforcement learning approach namely Deep Deterministic Policy Gradient(DDPG)method is chosen to design a gain adaptation mechanism for the SAFE-Cue module.By doing this,the gains of the SAFE-Cue will be intelligently tuned once nonlinear PIOs triggered;meanwhile,the human pilot will receive a force cue from the SAFE-Cue,and will consequently adapting his/her control policy.The second innovation of this paper is that the reward function of the DDPG based gain adaptation approach is constructed according to flying qualities.Under the premise of considering failure situation,task completion qualities and pilot workload are also taken into account.Finally,the proposed approach is validated using numerical simulation experiments with two types of scenarios:lower actuator rate limits and airframe damages.The Inceptor Peak Power-Phase(IPPP)metric is adopted to analyze the human-vehicle system simulation results.Results and analysis show that the DDPG based sharing control approach can well address nonlinear PIO problems consisting of Categories Ⅱ and Ⅲ PIO events.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074162,12004158,and 91964201)the National Key Research and Development Program of China(Grant Nos.2022YFA1403700 and 2020YFA0309300)+2 种基金the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B030327001)Guangdong Provincial Key Laboratory(Grant No.2019B121203002)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515130005)。
文摘Chiral anomaly is a distinct quantum anomaly associated with chiral fermions in Dirac or Weyl semimetals.The use of negative magnetoresistance(negative MR)as a signature for this anomaly remains contentious,as trivial mechanisms such as current jetting and weak localization can also induce negative MR.In this study,we report a novel nonlinear behavior of the chiral anomaly in the longitudinal direction,which we observed by applying parallel current and magnetic field to the Dirac semimetal Cd_(3)A_(s_(2)).This nonlinear characteristic peaks at an intermediate magnetic field of approximately5 T,displaying a resistance-increasing property concomitant with strengthening of the current source.Through angledependence experiments,we were able to rule out trivial factors,such as thermal effects,geometric artifacts,and anisotropy.Furthermore,additional electric quantum oscillations were observed when the direct current(DC)was applied as high as300μA.Such an unusual phenomenon is ascribed to the formation of quantized levels due to Bloch oscillation in the high DC regime,suggesting that an oscillatory density distribution may arise as the electric field increases.The non-Ohmic electric quantum oscillations open a new avenue for exploring chiral anomaly and other nontrivial topological properties,which is also one of the salient features of nonequilibrium steady states in condensed matter physics.
文摘The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used, ar an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing techniques of control to subharmonic instability of large rotating machinery.