期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Gauss-Legendre Iterative Methods and Their Applications on Nonlinear Systems and BVP-ODEs
1
作者 Zhongli Liu Guoqing Sun 《Journal of Applied Mathematics and Physics》 2016年第11期2038-2046,共9页
In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic co... In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods. 展开更多
关键词 Iterative Method Gauss-Legendre Quadrature Formula nonlinear Systems Third-Order Convergence nonlinear odes
下载PDF
一类非线性常微分方程的周期解 被引量:1
2
作者 卢喜观 杨奎元 《吉林大学自然科学学报》 CAS CSCD 1995年第2期31-34,共4页
证明了常微分方程(a(t,x,x′)x′)′=f(t,x)的2π周期解及其两点边值问题解的存在性。
关键词 非线性 周期解 边值问题 常微分方程
下载PDF
How to Make Systems of Nonlinear Autonomous ODEs with Attractor-Behavior, by First Making the General Solutions: Part Two
3
作者 Magne Stensland 《Journal of Applied Mathematics and Physics》 2023年第1期115-134,共20页
This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surface... This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result. 展开更多
关键词 System of nonlinear odes Limit Cycle General Solution ATTRACTOR
下载PDF
How to Make Systems of Nonlinear Autonomous ODEs with Attractor-Behavior, by First Making the General Solutions: Part One 被引量:1
4
作者 Magne Stensland 《Journal of Applied Mathematics and Physics》 2022年第12期3814-3835,共22页
In this paper, we will present a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where s... In this paper, we will present a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine and cosine. We are building up the general solutions bit for bit according to the constant terms that contain the formula of the desired limit cycle, and differentiating them. We will obtain a system of ODEs with the desired behavior. We design the general solutions for a distinct purpose. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions, and some surfaces having attractor behavior. The pictures show the result. 展开更多
关键词 System of nonlinear odes Limit Cycle General Solution ATTRACTOR
下载PDF
一类二级隐式Runge-Kutta方法的非线性稳定性及B-收敛性
5
作者 左义君 张建国 《四川师范大学学报(自然科学版)》 CAS CSCD 1991年第3期56-60,共5页
本文给出了一类二级全隐式的 Runge-Kutta(R-K)方法,讨论了它的非线性稳定性及 B-收敛性,最后将这类方法与传统的二级 R-K 方法作了比较,结果表明我们的方法不仅对非 stiff 问题较为适用(有较高的传统阶)而且也同样适用于 stiff 问题(... 本文给出了一类二级全隐式的 Runge-Kutta(R-K)方法,讨论了它的非线性稳定性及 B-收敛性,最后将这类方法与传统的二级 R-K 方法作了比较,结果表明我们的方法不仅对非 stiff 问题较为适用(有较高的传统阶)而且也同样适用于 stiff 问题(有完全相当的最优 B-收敛阶) 展开更多
关键词 stiff非线性常微分方程初值问题 非线性稳定性 B-收敛性
下载PDF
一个非线性二阶方程两点边值问题非负解的存在性
6
作者 张勇 《山东大学学报(自然科学版)》 CSCD 1992年第1期45-56,共12页
本文讨论由工程上合理曲线问题导出的两点边值问题非负解的存在性,给出了可解判别数λ=l^2/T上下界的估计。
关键词 两点边值问题 非负解 可解判别界
原文传递
二级对角隐Runge-Kutta方法的B-收敛性
7
作者 左义君 张建国 《四川师范大学学报(自然科学版)》 CAS CSCD 1991年第2期14-22,共9页
本文讨论了二级对角隐 Runge-Kutta 方法的 B-相容,B-稳定及 B-收敛性,导出了方法的1阶最优 B-收敛性,从而改进和推广了朱方生1988年的结果.本文讨论 B-相容,B-稳定性所用方法不同于 Dekker & Verwer 1984年的方法,所得误差估计较... 本文讨论了二级对角隐 Runge-Kutta 方法的 B-相容,B-稳定及 B-收敛性,导出了方法的1阶最优 B-收敛性,从而改进和推广了朱方生1988年的结果.本文讨论 B-相容,B-稳定性所用方法不同于 Dekker & Verwer 1984年的方法,所得误差估计较前更为精确,其中 B-稳定性的讨论也推广和修正了 Burrage & Butcher 1979年的结果. 展开更多
关键词 stiff非线性odes初值问题 二级对角隐R-K方法 B-相容性 B-稳定性 B-收敛性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部