In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic co...In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.展开更多
This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surface...This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.展开更多
In this paper, we will present a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where s...In this paper, we will present a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine and cosine. We are building up the general solutions bit for bit according to the constant terms that contain the formula of the desired limit cycle, and differentiating them. We will obtain a system of ODEs with the desired behavior. We design the general solutions for a distinct purpose. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions, and some surfaces having attractor behavior. The pictures show the result.展开更多
文摘In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.
文摘This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.
文摘In this paper, we will present a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine and cosine. We are building up the general solutions bit for bit according to the constant terms that contain the formula of the desired limit cycle, and differentiating them. We will obtain a system of ODEs with the desired behavior. We design the general solutions for a distinct purpose. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions, and some surfaces having attractor behavior. The pictures show the result.