In eliminating the fair sampling assumption, the Greenberger, Horne, Zeilinger (GHZ) theorem is believed to confirm Bell’s historic conclusion that local hidden variables are inconsistent with the results of quantum ...In eliminating the fair sampling assumption, the Greenberger, Horne, Zeilinger (GHZ) theorem is believed to confirm Bell’s historic conclusion that local hidden variables are inconsistent with the results of quantum mechanics. The GHZ theorem depends on predicting the results of sets of measurements of which only one may be performed. In the present paper, the noncommutative aspects of these unperformed measurements are critically examined. Classical examples and the logic of the GHZ construction are analyzed to demonstrate that combined counterfactual results of noncommuting operations are in general logically inconsistent with performed measurement sequences whose results depend on noncommutation. The Bell theorem is also revisited in the light of this result. It is concluded that negative conclusions regarding local hidden variables do not follow from the GHZ and Bell theorems as historically reasoned.展开更多
In constructing his theorem, Bell assumed that correlation functions among non-commuting variables are the same as those among commuting variables. However, in quantum mechanics, multiple data values exist simultaneou...In constructing his theorem, Bell assumed that correlation functions among non-commuting variables are the same as those among commuting variables. However, in quantum mechanics, multiple data values exist simultaneously for commuting operations while for non-commuting operations data are conditional on prior outcomes, or may be predicted as alternative outcomes of the non-commuting operations. Given these qualitative differences, there is no reason why correlation functions among non-commuting variables should be the same as those among commuting variables, as assumed by Bell. When data for commuting and noncommuting operations are predicted from quantum mechanics, their correlations are different, and they now satisfy the Bell inequality.展开更多
Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine t...Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations.展开更多
We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutati...We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly.展开更多
The paper presents a very simple and straight forward yet pure mathematical derivation of the structure of actual spacetime from quantum set theory. This is achieved by utilizing elements of the topological theory of ...The paper presents a very simple and straight forward yet pure mathematical derivation of the structure of actual spacetime from quantum set theory. This is achieved by utilizing elements of the topological theory of cobordism and the Menger-Urysohn dimensional theory in conjunction with von Neumann-Connes dimensional function of Klein-Penrose modular holographic boundary of the E8E8 exceptional Lie group bulk of our universe. The final result is a lucid sharp mental picture, namely that the quantum wave is an empty set representing the surface, i.e. boundary of the zero set quantum particle and in turn quantum spacetime is simply the boundary or the surface of the quantum wave empty set. The essential difference of the quantum wave and quantum spacetime is that the wave is a simple empty set while spacetime is a multi-fractal type of infinitely many empty sets with increasing degrees of emptiness.展开更多
Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M...Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M).展开更多
In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscali...In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscaling of c namely . Since the maximal height in the one-dimensional universe must be where is the unit interval length and note that the topological mass (m) and topological dimension (D) where m = D = 5 are that of the largest unit sphere volume, we can conclude that the potential energy of classical mechanics translates to . Remembering that the kinetic energy is , then by the same logic we see that when m = 5 is replaced by for reasons which are explained in the main body of the present work. Adding both expressions together, we find Einstein’s maximal energy . As a general conclusion, we note that within high energy cosmology, the sharp distinction between potential energy and kinetic energy of classical mechanics is blurred on the cosmic scale. Apart of being an original contribution, the article presents an almost complete bibliography on the Cantorian-fractal spacetime theory.展开更多
Based on noncommutative differential calculus, we present a theory of prolongation structure for semidiscrete non/inear evolution equations. As an illustrative example, a semi-discrete model of the non/inear SchrSding...Based on noncommutative differential calculus, we present a theory of prolongation structure for semidiscrete non/inear evolution equations. As an illustrative example, a semi-discrete model of the non/inear SchrSdinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.展开更多
The present paper is basically written as a non-apologetic strong defence of the thesis that computation is part and parcel of a physical theory and by no means a mere numerical evaluation of the prediction of a theor...The present paper is basically written as a non-apologetic strong defence of the thesis that computation is part and parcel of a physical theory and by no means a mere numerical evaluation of the prediction of a theory which comes towards the end. Various general considerations as well as specific examples are given to illustrate and support our arguments. These examples range from the practical aspect to almost esoteric considerations but at the end, everything converges towards a unity of theory and computation presented in the form of modern fractal logic and transfinite quantum field theory in a Cantorian spacetime. It is true that all our examples are taken from physics but our discussion is applicable in equal measure to a much wider aspect of life.展开更多
Abstract Let x = (xn)n≥1 be a martingale on a noncommutative probability space (М,τ) and (Wn)n≥1 a sequence of positive numbers such that Wn =∑^n_k=1 wk→∞ as n→∞. We prove that x = (Xn)n≥1 converges...Abstract Let x = (xn)n≥1 be a martingale on a noncommutative probability space (М,τ) and (Wn)n≥1 a sequence of positive numbers such that Wn =∑^n_k=1 wk→∞ as n→∞. We prove that x = (Xn)n≥1 converges bilaterally almost uniformly (b.a.u.) if and only if the weighted average (σan(x))n≥1 of x converges b.a.u, to the same limit under some condition, where σn(x) is given by σn(x)=1/Wn ^n∑_k=1 wkxk,n=1,2,… Furthermore, we prove that x = (xn)n≥1 converges in Lp(М) if and only if (σ'n(x))n≥1 converges in Lp(М), where 1 ≤p 〈 ∞ .We also get a criterion of uniform integrability for a family in L1(М).展开更多
Let (Φ,Ψ) be a pair of complementary N-functions and HΦ(A) and HΨ(A) be the associated noncommutative Orlicz-Hardy spaces. We extend the Riesz, Szeg¨o and inner-outer type factorization theorems of Hp...Let (Φ,Ψ) be a pair of complementary N-functions and HΦ(A) and HΨ(A) be the associated noncommutative Orlicz-Hardy spaces. We extend the Riesz, Szeg¨o and inner-outer type factorization theorems of Hp(A) to this case.展开更多
The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum f...The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.展开更多
A Clifford deformation of a Koszul Frobenius algebra E is a finite dimensional Z_(2)-graded algebra E(θ),which corresponds to a noncommutative quadric hypersurface E^(!)/(z)for some central regular element z∈E_(2)^(...A Clifford deformation of a Koszul Frobenius algebra E is a finite dimensional Z_(2)-graded algebra E(θ),which corresponds to a noncommutative quadric hypersurface E^(!)/(z)for some central regular element z∈E_(2)^(!).It turns out that the bounded derived category D^(b)(gr_(Z_(2))E(θ))is equivalent to the stable category of the maximal Cohen-Macaulay modules over E^(!)/(z)provided that E!is noetherian.As a consequence,E^(!)/(z)is a noncommutative isolated singularity if and only if the corresponding Clifford deformation E(θ)is a semisimple Z_(2)-graded algebra.The preceding equivalence of triangulated categories also indicates that Clifford deformations of trivial extensions of a Koszul Frobenius algebra are related to Knörrer's periodicity theorem for quadric hypersurfaces.As an application,we recover Knörrer's periodicity theorem without using matrix factorizations.展开更多
In a way similar to the continuous case formally, we define in different but equivalent manners the difference discrete connection and curvature on discrete vector bundle over the regular lattice as base space. We dea...In a way similar to the continuous case formally, we define in different but equivalent manners the difference discrete connection and curvature on discrete vector bundle over the regular lattice as base space. We deal with the difference operators as the discrete counterparts of the derivatives based upon the differential calculus on the lattice. One of the definitions can be extended to the case over the random lattice. We also discuss the relation between our approach and the lattice gauge theory and apply to the discrete integrable systems.展开更多
By introducing the noncommutative differential calculus on the function space of the infinite/finite set and construct a homotopy operator, one prove the analogue of the Poincare lemma for the difference complex. As a...By introducing the noncommutative differential calculus on the function space of the infinite/finite set and construct a homotopy operator, one prove the analogue of the Poincare lemma for the difference complex. As an application of the differential calculus, a two dimensional integral model can be derived from the noncommutative differential calculus.展开更多
While wormholes are as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null...While wormholes are as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null energy condition, calling for the existence of exotic matter. The Casimir effect has shown that this physical requirement can be met on a small scale, thereby solving a key conceptual problem. The Casimir effect does not, however, guarantee that the small-scale violation is sufficient for supporting a macroscopic wormhole. The purpose of this paper is to connect the Casimir effect to noncommutative geometry, which also aims to accommodate small-scale effects, the difference being that these can now be viewed as intrinsic properties of spacetime. As a result, the noncommutative effects can be implemented by modifying only the energy momentum tensor in the Einstein field equations, while leaving the Einstein tensor unchanged. The wormhole can therefore be macroscopic in spite of the small Casimir effect.展开更多
Noncommutative Poisson algebras are the algebras having both an associative algebra structure and a Lie algebra structure together with the Leibniz law. In this article,the noncommutative Poisson algebra structures on...Noncommutative Poisson algebras are the algebras having both an associative algebra structure and a Lie algebra structure together with the Leibniz law. In this article,the noncommutative Poisson algebra structures on sp2l(^~CQ) are determined.展开更多
Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm...Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.展开更多
Condense matter methods and mathematical models used in solving problems in solid state physics are transformed to high energy quantum cosmology in order to estimate the magnitude of the missing dark energy of the uni...Condense matter methods and mathematical models used in solving problems in solid state physics are transformed to high energy quantum cosmology in order to estimate the magnitude of the missing dark energy of the universe. Looking at the problem from this novel viewpoint was rewarded by a rather unexpected result, namely that the gap labelling method of integrated density of states for three dimensional icosahedral quasicrystals is identical to the previously measured and theoretically concluded ordinary energy density of the universe, namely a mere 4.5 percent of Einstein’s energy density, i.e. E(O) = mc2/22 where E is the energy, m is the mass and c is the speed of light. Consequently we conclude that the missing dark energy density must be E(D) = 1 - E(O) = mc2(21/22) in agreement with all known cosmological measurements and observations. This result could also be interpreted as a strong evidence for the self similarity of the geometry of spacetime, which is an expression of its basic fractal nature.展开更多
文摘In eliminating the fair sampling assumption, the Greenberger, Horne, Zeilinger (GHZ) theorem is believed to confirm Bell’s historic conclusion that local hidden variables are inconsistent with the results of quantum mechanics. The GHZ theorem depends on predicting the results of sets of measurements of which only one may be performed. In the present paper, the noncommutative aspects of these unperformed measurements are critically examined. Classical examples and the logic of the GHZ construction are analyzed to demonstrate that combined counterfactual results of noncommuting operations are in general logically inconsistent with performed measurement sequences whose results depend on noncommutation. The Bell theorem is also revisited in the light of this result. It is concluded that negative conclusions regarding local hidden variables do not follow from the GHZ and Bell theorems as historically reasoned.
文摘In constructing his theorem, Bell assumed that correlation functions among non-commuting variables are the same as those among commuting variables. However, in quantum mechanics, multiple data values exist simultaneously for commuting operations while for non-commuting operations data are conditional on prior outcomes, or may be predicted as alternative outcomes of the non-commuting operations. Given these qualitative differences, there is no reason why correlation functions among non-commuting variables should be the same as those among commuting variables, as assumed by Bell. When data for commuting and noncommuting operations are predicted from quantum mechanics, their correlations are different, and they now satisfy the Bell inequality.
文摘Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations.
基金National Natural Science Foundation of China (10575026, 10665001, 10447005)Natural Science Foundation of Zhejiang Province, China (Y607437)Natural Science Foundation of Education Bureau of Shaanxi Province, China (07JK207,06JK326)
文摘We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly.
文摘The paper presents a very simple and straight forward yet pure mathematical derivation of the structure of actual spacetime from quantum set theory. This is achieved by utilizing elements of the topological theory of cobordism and the Menger-Urysohn dimensional theory in conjunction with von Neumann-Connes dimensional function of Klein-Penrose modular holographic boundary of the E8E8 exceptional Lie group bulk of our universe. The final result is a lucid sharp mental picture, namely that the quantum wave is an empty set representing the surface, i.e. boundary of the zero set quantum particle and in turn quantum spacetime is simply the boundary or the surface of the quantum wave empty set. The essential difference of the quantum wave and quantum spacetime is that the wave is a simple empty set while spacetime is a multi-fractal type of infinitely many empty sets with increasing degrees of emptiness.
基金supported by the National Natural Science Foundation of China (11071190)
文摘Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M).
文摘In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscaling of c namely . Since the maximal height in the one-dimensional universe must be where is the unit interval length and note that the topological mass (m) and topological dimension (D) where m = D = 5 are that of the largest unit sphere volume, we can conclude that the potential energy of classical mechanics translates to . Remembering that the kinetic energy is , then by the same logic we see that when m = 5 is replaced by for reasons which are explained in the main body of the present work. Adding both expressions together, we find Einstein’s maximal energy . As a general conclusion, we note that within high energy cosmology, the sharp distinction between potential energy and kinetic energy of classical mechanics is blurred on the cosmic scale. Apart of being an original contribution, the article presents an almost complete bibliography on the Cantorian-fractal spacetime theory.
基金The project supported by Tianyuan Foundation for Mathematics under Grant No. 10626016 of National Natural Science Foundation of China, China Postdoctoral Science Foundation, Beijing Jiao-Wei Key Project under Grant No. KZ 200310028010, and National Natural Science Foundation of China under Grant No. 10375038
文摘Based on noncommutative differential calculus, we present a theory of prolongation structure for semidiscrete non/inear evolution equations. As an illustrative example, a semi-discrete model of the non/inear SchrSdinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.
文摘The present paper is basically written as a non-apologetic strong defence of the thesis that computation is part and parcel of a physical theory and by no means a mere numerical evaluation of the prediction of a theory which comes towards the end. Various general considerations as well as specific examples are given to illustrate and support our arguments. These examples range from the practical aspect to almost esoteric considerations but at the end, everything converges towards a unity of theory and computation presented in the form of modern fractal logic and transfinite quantum field theory in a Cantorian spacetime. It is true that all our examples are taken from physics but our discussion is applicable in equal measure to a much wider aspect of life.
基金supported by National Natural Science Foundation of China (Grant No.11071190)
文摘Abstract Let x = (xn)n≥1 be a martingale on a noncommutative probability space (М,τ) and (Wn)n≥1 a sequence of positive numbers such that Wn =∑^n_k=1 wk→∞ as n→∞. We prove that x = (Xn)n≥1 converges bilaterally almost uniformly (b.a.u.) if and only if the weighted average (σan(x))n≥1 of x converges b.a.u, to the same limit under some condition, where σn(x) is given by σn(x)=1/Wn ^n∑_k=1 wkxk,n=1,2,… Furthermore, we prove that x = (xn)n≥1 converges in Lp(М) if and only if (σ'n(x))n≥1 converges in Lp(М), where 1 ≤p 〈 ∞ .We also get a criterion of uniform integrability for a family in L1(М).
文摘Let (Φ,Ψ) be a pair of complementary N-functions and HΦ(A) and HΨ(A) be the associated noncommutative Orlicz-Hardy spaces. We extend the Riesz, Szeg¨o and inner-outer type factorization theorems of Hp(A) to this case.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.
基金supported by ZJNSF(LY19A010011)NSFC(11971141,12371017)supported by NSFC(11971449,12131015,12371042).
文摘A Clifford deformation of a Koszul Frobenius algebra E is a finite dimensional Z_(2)-graded algebra E(θ),which corresponds to a noncommutative quadric hypersurface E^(!)/(z)for some central regular element z∈E_(2)^(!).It turns out that the bounded derived category D^(b)(gr_(Z_(2))E(θ))is equivalent to the stable category of the maximal Cohen-Macaulay modules over E^(!)/(z)provided that E!is noetherian.As a consequence,E^(!)/(z)is a noncommutative isolated singularity if and only if the corresponding Clifford deformation E(θ)is a semisimple Z_(2)-graded algebra.The preceding equivalence of triangulated categories also indicates that Clifford deformations of trivial extensions of a Koszul Frobenius algebra are related to Knörrer's periodicity theorem for quadric hypersurfaces.As an application,we recover Knörrer's periodicity theorem without using matrix factorizations.
基金Acknowledgements This work was partly supported by the National Key Basic Research Program of China(Grant No.2004CB318000)the National Natural Science Foundation of China(Grant No.10375087,10375038,90403018,90503002).
文摘In a way similar to the continuous case formally, we define in different but equivalent manners the difference discrete connection and curvature on discrete vector bundle over the regular lattice as base space. We deal with the difference operators as the discrete counterparts of the derivatives based upon the differential calculus on the lattice. One of the definitions can be extended to the case over the random lattice. We also discuss the relation between our approach and the lattice gauge theory and apply to the discrete integrable systems.
基金Supported by the China Pcetdoctoral Science Foundation by a grant from Henan University(05YBZR014)Supported by the Tianyuan Foundation for Mathematics of National Natural Science Foundation of China(10626016)
文摘By introducing the noncommutative differential calculus on the function space of the infinite/finite set and construct a homotopy operator, one prove the analogue of the Poincare lemma for the difference complex. As an application of the differential calculus, a two dimensional integral model can be derived from the noncommutative differential calculus.
文摘While wormholes are as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null energy condition, calling for the existence of exotic matter. The Casimir effect has shown that this physical requirement can be met on a small scale, thereby solving a key conceptual problem. The Casimir effect does not, however, guarantee that the small-scale violation is sufficient for supporting a macroscopic wormhole. The purpose of this paper is to connect the Casimir effect to noncommutative geometry, which also aims to accommodate small-scale effects, the difference being that these can now be viewed as intrinsic properties of spacetime. As a result, the noncommutative effects can be implemented by modifying only the energy momentum tensor in the Einstein field equations, while leaving the Einstein tensor unchanged. The wormhole can therefore be macroscopic in spite of the small Casimir effect.
基金This work is partially supported by NNSF of China(10671124)the Specialized Research Fund for the Doctoral Program of Higher Education(20040247024).
文摘Noncommutative Poisson algebras are the algebras having both an associative algebra structure and a Lie algebra structure together with the Leibniz law. In this article,the noncommutative Poisson algebra structures on sp2l(^~CQ) are determined.
基金partly supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region(2013211A001)
文摘Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.
文摘Condense matter methods and mathematical models used in solving problems in solid state physics are transformed to high energy quantum cosmology in order to estimate the magnitude of the missing dark energy of the universe. Looking at the problem from this novel viewpoint was rewarded by a rather unexpected result, namely that the gap labelling method of integrated density of states for three dimensional icosahedral quasicrystals is identical to the previously measured and theoretically concluded ordinary energy density of the universe, namely a mere 4.5 percent of Einstein’s energy density, i.e. E(O) = mc2/22 where E is the energy, m is the mass and c is the speed of light. Consequently we conclude that the missing dark energy density must be E(D) = 1 - E(O) = mc2(21/22) in agreement with all known cosmological measurements and observations. This result could also be interpreted as a strong evidence for the self similarity of the geometry of spacetime, which is an expression of its basic fractal nature.