期刊文献+
共找到382篇文章
< 1 2 20 >
每页显示 20 50 100
Fusion of Infrared and Visible Light Images Based on Region Segmentation 被引量:12
1
作者 刘坤 郭雷 +1 位作者 李晖晖 陈敬松 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期75-80,共6页
This article proposes a novel method to fuse infrared and visible light images based on region segmentation. Region segmen-tation is used to determine important regions and background information in the input image. T... This article proposes a novel method to fuse infrared and visible light images based on region segmentation. Region segmen-tation is used to determine important regions and background information in the input image. The non-subsampled contourlet transform (NSCT) provides a flexible multiresolution,local and directional image expansion,and also a sparse representation for two-dimensional (2-D) piecewise smooth signal building images,and then different fusion rules are applied to fuse the NSCT coefficients fo... 展开更多
关键词 image processing image fusion non-subsampled contourlet transform region segmentation infrared imaging
原文传递
Digital watermarking algorithm based on scale-invariant feature regions in non-subsampled contourlet transform domain 被引量:8
2
作者 Jian Zhao Na Zhang +1 位作者 Jian Jia Huanwei Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1310-1315,共6页
Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy... Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached. 展开更多
关键词 multi-scale geometric analysis (MGA) non-subsampled contourlet transform (NSCT) scale-invariant featureregion.
下载PDF
De-scattering and edge-enhancement algorithms for underwater image restoration 被引量:6
3
作者 Pan-wang PAN Fei YUAN En CHENG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第6期862-871,共10页
Image restoration is a critical procedure for underwater images, which suffer from serious color deviation and edge blurring. Restoration can be divided into two stages: de-scattering and edge enhancement. First, we i... Image restoration is a critical procedure for underwater images, which suffer from serious color deviation and edge blurring. Restoration can be divided into two stages: de-scattering and edge enhancement. First, we introduce a multi-scale iterative framework for underwater image de-scattering, where a convolutional neural network is used to estimate the transmission map and is followed by an adaptive bilateral filter to refine the estimated results. Since there is no available dataset to train the network, a dataset which includes 2000 underwater images is collected to obtain the synthetic data. Second, a strategy based on white balance is proposed to remove color casts of underwater images. Finally, images are converted to a special transform domain for denoising and enhancing the edge using the non-subsampled contourlet transform. Experimental results show that the proposed method significantly outperforms state-of-the-art methods both qualitatively and quantitatively. 展开更多
关键词 Image de-scattering EDGE ENHANCEMENT Convolutional neural network non-subsampled CONTOURLET transform
原文传递
基于NSCT结合显著图与区域能量的红外与可见光图像融合
4
作者 牛振华 邢延超 +1 位作者 林英超 王晨轩 《红外技术》 CSCD 北大核心 2024年第1期84-93,共10页
针对传统的红外与可见光图像融合出现的清晰度和对比度偏低,目标不够突出的问题,本文提出了一种基于Non-subsampledContourlet(NSCT)变换结合显著图与区域能量的融合方法。首先,使用改进的频率调谐(Frequency-tuned,FT)方法求出红外图... 针对传统的红外与可见光图像融合出现的清晰度和对比度偏低,目标不够突出的问题,本文提出了一种基于Non-subsampledContourlet(NSCT)变换结合显著图与区域能量的融合方法。首先,使用改进的频率调谐(Frequency-tuned,FT)方法求出红外图像显著图并归一化得到显著图权重,单尺度Retinex(Single-scale Retinex,SSR)处理可见光图像。其次,使用NSCT分解红外与可见光图像,并基于归一化显著图与区域能量设计新的融和权重来指导低频系数融合,解决了区域能量自适应加权容易引入噪声的问题;采用改进的“加权拉普拉斯能量和”指导高频系数融合。最后,通过逆NSCT变换求出融合图像。本文方法与7种经典方法在6组图像中进行对比实验,在信息熵、互信息、平均梯度和标准差指标中最优,在空间频率中第一组图像为次优,其余图像均为最优结果。融合图像信息量丰富、清晰度高、对比度高并且亮度适中易于人眼观察,验证了本文方法的有效性。 展开更多
关键词 图像融合 non-subsampled Contourlet变换 区域能量自适应加权 拉普拉斯能量和
下载PDF
Image edge detection based on pulse coupled neural network and modulus maxima in non-subsampled contourlet domain 被引量:6
5
作者 Hu Ling Chang Xia Qian Wei 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2018年第3期55-64,共10页
Edge is the intrinsic geometric structure of an image. Edge detection methods are the key technologies in the lleld of image processing. In this paper, a multi-scale image edge detection method is proposed to effectiv... Edge is the intrinsic geometric structure of an image. Edge detection methods are the key technologies in the lleld of image processing. In this paper, a multi-scale image edge detection method is proposed to effectively extract image geometric features. A source image is decomposed into the high frequency directional sub-bands coefficients and the low frequency sub-bands coefficients by non-subampled contourlet transform (NSCT). The high frequency sub-bands coefficients are used to detect the abundant details of the image edges by the modulus maxima (MM) algorithm. The low frequency sub-band coefficients are used to detect the basic contour line of the image edges by the pulse coupled neural network (PCNN). The final edge detection image is reconstructed with detected edge information at different scales and different directional sub-bands in the NSCT domain. Experimental results demonstrate that the proposed method outperforms several state-of-art image edge detection methods in both visual effects and objective evaluation. 展开更多
关键词 edge detection modulus maxima pulse coupled neural network wavelet transform non-subsampled contourlet transform
原文传递
Multi-focus image fusion based on block matching in 3D transform domain 被引量:5
6
作者 YANG Dongsheng HU Shaohai +2 位作者 LIU Shuaiqi MA Xiaole SUN Yuchao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期415-428,共14页
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ... Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods. 展开更多
关键词 image fusion block matching 3D transform block-matching and 3D(BM3D) non-subsampled Shearlet transform(NSST)
下载PDF
Multi-Modal Medical Image Fusion Based on Improved Parameter Adaptive PCNN and Latent Low-Rank Representation
7
作者 Zirui Tang Xianchun Zhou 《Instrumentation》 2024年第2期53-63,共11页
Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ... Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes. 展开更多
关键词 image fusion improved parameter adaptive pcnn non-subsampled shear-wave transform latent low-rank representation
下载PDF
基于非下采样shearlet变换的微地震随机噪声压制 被引量:6
8
作者 刘昕 陈祖斌 +1 位作者 王东鹤 文晓哲 《煤炭技术》 CAS 北大核心 2016年第1期128-129,共2页
基于非下采样shearlet变换的微地震资料去噪方法,相比于其他多尺度变换方法具有更好的方向敏感性和最优稀疏表示性能,具有更强的去除随机噪声的能力,信号保真度更好。同时较传统的shearlet变换具有平移不变性,克服了伪吉布斯现象。利用... 基于非下采样shearlet变换的微地震资料去噪方法,相比于其他多尺度变换方法具有更好的方向敏感性和最优稀疏表示性能,具有更强的去除随机噪声的能力,信号保真度更好。同时较传统的shearlet变换具有平移不变性,克服了伪吉布斯现象。利用非下采样shearlet变换阈值去噪法与小波和曲波阈值变换方法对微地震仿真和实际资料的随机噪声的压制进行对比分析,结果表明非下采样shearlet变换具有更好的去噪能力。 展开更多
关键词 SHEARLET变换 非下采样 微地震 随机噪声 去噪
下载PDF
Multimodal Medical Image Fusion in Non-Subsampled Contourlet Transform Domain 被引量:3
9
作者 Periyavattam Shanmugam Gomathi Bhuvanesh Kalaavathi 《Circuits and Systems》 2016年第8期1598-1610,共13页
Multimodal medical image fusion is a powerful tool for diagnosing diseases in medical field. The main objective is to capture the relevant information from input images into a single output image, which plays an impor... Multimodal medical image fusion is a powerful tool for diagnosing diseases in medical field. The main objective is to capture the relevant information from input images into a single output image, which plays an important role in clinical applications. In this paper, an image fusion technique for the fusion of multimodal medical images is proposed based on Non-Subsampled Contourlet Transform. The proposed technique uses the Non-Subsampled Contourlet Transform (NSCT) to decompose the images into lowpass and highpass subbands. The lowpass and highpass subbands are fused by using mean based and variance based fusion rules. The reconstructed image is obtained by taking Inverse Non-Subsampled Contourlet Transform (INSCT) on fused subbands. The experimental results on six pairs of medical images are compared in terms of entropy, mean, standard deviation, Q<sup>AB/F</sup> as performance parameters. It reveals that the proposed image fusion technique outperforms the existing image fusion techniques in terms of quantitative and qualitative outcomes of the images. The percentage improvement in entropy is 0% - 40%, mean is 3% - 42%, standard deviation is 1% - 42%, Q<sup>AB/F</sup>is 0.4% - 48% in proposed method comparing to conventional methods for six pairs of medical images. 展开更多
关键词 Image Fusion non-subsampled Contourlet Transform (NSCT) Medical Imaging Fusion Rules
下载PDF
Skin Lesion Classification System Using Shearlets
10
作者 S.Mohan Kumar T.Kumanan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期833-844,共12页
The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automati... The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions. 展开更多
关键词 Skin lesion classification non-subsampled shearlet transform sub-band coefficients energy feature support vector machine
下载PDF
Multimodal Medical Image Fusion Based on Parameter Adaptive PCNN and Latent Low-rank Representation
11
作者 WANG Wenyan ZHOU Xianchun YANG Liangjian 《Instrumentation》 2023年第1期45-58,共14页
Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image ... Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators. 展开更多
关键词 Image Fusion non-subsampled Shearlet Transform Parameter Adaptive PCNN Latent Low-rank Representation
下载PDF
Robust Watermarking Algorithm for Medical Images Based on Non-Subsampled Shearlet Transform and Schur Decomposition
12
作者 Meng Yang Jingbing Li +2 位作者 Uzair Aslam Bhatti Chunyan Shao Yen-Wei Chen 《Computers, Materials & Continua》 SCIE EI 2023年第6期5539-5554,共16页
With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues co... With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image. 展开更多
关键词 non-subsampled Shearlet Transform(NSST) Schur decomposition perceptual hashing chaotic mapping zero watermark
下载PDF
非下抽样抗混叠Contourlet变换及其自适应阈值去噪 被引量:3
13
作者 米德伶 冯鹏 +2 位作者 魏彪 黎蕾蕾 潘英俊 《光电子.激光》 EI CAS CSCD 北大核心 2009年第12期1667-1670,共4页
针对Contourlet变换在频谱混叠及平移不变性方面存在的局限性,提出了一种非下抽样抗混叠Contourlet变换(NS-NACT),其由非下抽样抗混叠塔式滤波器组(NS-NPFB)和非下抽样方向滤波器组(UDFB)构成。基于此,研究了一种基于自适应阈值调节的... 针对Contourlet变换在频谱混叠及平移不变性方面存在的局限性,提出了一种非下抽样抗混叠Contourlet变换(NS-NACT),其由非下抽样抗混叠塔式滤波器组(NS-NPFB)和非下抽样方向滤波器组(UDFB)构成。基于此,研究了一种基于自适应阈值调节的去噪算法。实验研究结果表明,当噪声方差σ=30时,通过本文算法去噪后的图像,不仅峰值信噪比(PSNR)较非抽样小波和Contourlet分别高出0.65dB和3.47dB,而且有效抑制了Contourlet变换去噪后的Gibbs现象,同时还可以更好地保留图像的边缘和细节,去噪效果更佳。 展开更多
关键词 CONTOURLET变换 混叠 平移不变性 非下抽样 自适应阈值
原文传递
一种基于非下采样Contourlet变换的自适应阈值去噪方法 被引量:3
14
作者 黄宇达 魏霞 +1 位作者 王迤冉 孙涛 《计算机与数字工程》 2012年第5期111-113,151,共4页
文章提出了一种基于非下采样Contourlet变换的自适应图像去噪方法。首先对噪声图像进行非下采样Contourlet变换,得到各个尺度各个方向子带的系数,再根据该系数的能量自适应地调整Bayes去噪阈值。实验结果表明:与小波阈值去噪方法对比,... 文章提出了一种基于非下采样Contourlet变换的自适应图像去噪方法。首先对噪声图像进行非下采样Contourlet变换,得到各个尺度各个方向子带的系数,再根据该系数的能量自适应地调整Bayes去噪阈值。实验结果表明:与小波阈值去噪方法对比,非下采样Contourlet自适应阈值去噪算法在保留图像边缘细节的同时,不仅能明显提高图像的SNR值,而且还减少了Gibbs现象。 展开更多
关键词 非下采样 CONTOURLET变换 阈值去噪 BAYES
下载PDF
Low-light color image enhancement based on NSST
15
作者 Wu Xiaochu Tang Guijin +2 位作者 Liu Xiaohua Cui Ziguan Luo Suhuai 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2019年第5期41-48,共8页
In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the propo... In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the proposed algorithm are described as follows.First,the image is converted from the red,green and blue(RGB)color space to the hue,saturation and value(HSV)color space,and the histogram equalization(HE)is performed on the value component.Next,non-subsampled shearlet transform(NSST)is used on the value component to decompose the image into a low frequency sub-band and several high frequency sub-bands.Then,the low frequency sub-band and high frequency sub-bands are enhanced respectively by Gamma correction and improved guided image filtering(IGIF),and the enhanced value component is formed by inverse NSST transform.Finally,the image is converted back to the RGB color space to obtain the enhanced image.Experimental results show that the proposed method not only significantly improves the visibility and contrast,but also better preserves the edge and details of images. 展开更多
关键词 non-subsampled shearlet transform guided image filtering low-light image enhancement the HSV color space
原文传递
Deformable Registration Algorithm via Non-subsampled Contourlet Transform and Saliency Map
16
作者 Chang Qing Yang Wenyou Chen Lanlan 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第4期452-462,共11页
Medical image registration is widely used in image-guided therapy and image-guided surgery to estimate spatial correspondence between planning and treatment images.However,most methods based on intensity have the prob... Medical image registration is widely used in image-guided therapy and image-guided surgery to estimate spatial correspondence between planning and treatment images.However,most methods based on intensity have the problems of matching ambiguity and ignoring the influence of weak correspondence areas on the overall registration.In this study,we propose a novel general-purpose registration algorithm based on free-form deformation by non-subsampled contourlet transform and saliency map,which can reduce the matching ambiguities and maintain the topological structure of weak correspondence areas.An optimization method based on Markov random fields is used to optimize the registration process.Experiments on four public datasets from brain,cardiac,and lung have demonstrated the general applicability and the accuracy of our algorithm compared with two state-of-the-art methods. 展开更多
关键词 medical image registration non-subsampled contourlet transform saliency map Markov random fields
原文传递
方向波合成孔径雷达图像噪声抑制
17
作者 张健 陈孝威 《计算机仿真》 CSCD 北大核心 2011年第3期44-47,共4页
关于提高孔径雷达图像质量,应研究雷达图像去噪问题,针对目前小波对高维信息的方向性不敏感,在合成孔径雷达图像斑点噪声抑制中不能很好的保留图像的边缘、轮廓与纹理信息的缺点,为提高图像质量,提出一种方向波的SAR图像斑点噪声抑制方... 关于提高孔径雷达图像质量,应研究雷达图像去噪问题,针对目前小波对高维信息的方向性不敏感,在合成孔径雷达图像斑点噪声抑制中不能很好的保留图像的边缘、轮廓与纹理信息的缺点,为提高图像质量,提出一种方向波的SAR图像斑点噪声抑制方法。根据数字化线段理论和整数栅格理论的方向波不仅继承了小波变换维数可分性的特点,而且通过选择变换方向和队列方向来获得灵活的多方向性进行仿真,从而能够更好的捕获图像方向信息,经实验证明,所提出的方法能够克服小波去噪中"振铃效应"和边缘模糊等现象,证明了方法有效性。 展开更多
关键词 方向波 非下采样 整数栅格 合成孔径雷达图像 斑点噪声抑制
下载PDF
基于多尺度Retinex的非下采样Contourlet域图像增强 被引量:38
18
作者 吴一全 史骏鹏 《光学学报》 EI CAS CSCD 北大核心 2015年第3期79-88,共10页
针对部分遥感图像和高光谱图像中存在的对比度不足、整体偏暗等问题,提出了一种基于多尺度Retinex(MSR)和混沌小生境粒子群优化(NCPSO)的非下采样Contourlet变换(NSCT)域图像增强方法,用于改善图像质量。对图像进行NSCT分解,得到一个低... 针对部分遥感图像和高光谱图像中存在的对比度不足、整体偏暗等问题,提出了一种基于多尺度Retinex(MSR)和混沌小生境粒子群优化(NCPSO)的非下采样Contourlet变换(NSCT)域图像增强方法,用于改善图像质量。对图像进行NSCT分解,得到一个低频分量和多个不同方向的高频分量;在低频分量上进行混合灰度函数的多尺度Retinex增强;同时利用非线性增益函数调整高频分量系数,将兼顾对比度和信息熵的定量综合评价函数作为NCPSO的适应度,寻找非线性增益函数所涉及的最优参数。大量实验结果表明,与双向直方图均衡方法、NSCT方法、多尺度Retinex方法、平稳小波变换和Retinex方法等4种增强方法相比,提出的方法能更有效地提高图像的对比度和信息熵,增强图像的整体视觉效果。 展开更多
关键词 遥感 高光谱图像 图像增强 非下采样CONTOURLET变换 多尺度RETINEX 混沌小生境粒子群优化
原文传递
基于非下采样轮廓波变换遥感影像超分辨重建方法 被引量:37
19
作者 周靖鸿 周璀 +1 位作者 朱建军 樊东昊 《光学学报》 EI CAS CSCD 北大核心 2015年第1期98-106,共9页
针对现有非下采样轮廓波变换(NSCT)超分辨率重建方法的不足提出了一种改进的重建方法。空间频率大小反映图像细节信息丰富的程度,改进方法将区域窗口内空间频率的大小作为定权的标准对NSCT分解获得的各对应高频图像进行自适应加权融合。... 针对现有非下采样轮廓波变换(NSCT)超分辨率重建方法的不足提出了一种改进的重建方法。空间频率大小反映图像细节信息丰富的程度,改进方法将区域窗口内空间频率的大小作为定权的标准对NSCT分解获得的各对应高频图像进行自适应加权融合。将NSCT分析与自适应加权融合相结合用以实现影像超分辨率重建,其中利用自适应加权融合方法将各高频图像分别进行融合,同时将低频图像进行取均值处理,分别获得处理后的高低频图像,通过NSCT逆变换获得最终的超分辨图像。通过仿真实验与工程应用验证了改进方法的可行性与有效性。 展开更多
关键词 图像处理 超分辨率重建 非下采样轮廓波变换 区域自适应融合 二维小波变换 双三次插值
原文传递
基于NSST的红外与可见光图像融合算法 被引量:32
20
作者 邓立暖 尧新峰 《电子学报》 EI CAS CSCD 北大核心 2017年第12期2965-2970,共6页
针对红外与可见光图像具有不同的特点,提出一种新的基于非下采样剪切波变换(NSST)的红外与可见光图像融合算法.算法首先采用NSST将已配准的红外与可见光图像进行分解,得到低频子带图像和各尺度各方向的高频子带图像;然后对低频子带图像... 针对红外与可见光图像具有不同的特点,提出一种新的基于非下采样剪切波变换(NSST)的红外与可见光图像融合算法.算法首先采用NSST将已配准的红外与可见光图像进行分解,得到低频子带图像和各尺度各方向的高频子带图像;然后对低频子带图像采用一种基于显著图的低频融合规则进行融合,而对高频子带图像的融合,结合人眼视觉特性,采用一种基于改进的区域对比度的融合规则;最后,对融合的低频子带图像和高频子带图像进行NSST逆变换得到融合图像.实验结果表明,该算法能够有效地综合红外与可见光图像中的重要信息,融合效果要优于一般的基于NSCT、NSST的图像融合方法. 展开更多
关键词 图像融合 红外与可见光图像 NSST 显著图 区域对比度
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部