期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Structure of the spectrum of infinite dimensional Hamiltonian operators 被引量:26
1
作者 Alatancang 《Science China Mathematics》 SCIE 2008年第5期915-924,共10页
This paper deals with the structure of the spectrum of infinite dimensional Hamiltonian operators.It is shown that the spectrum,the union of the point spectrum and residual spectrum,and the continuous spectrum are all... This paper deals with the structure of the spectrum of infinite dimensional Hamiltonian operators.It is shown that the spectrum,the union of the point spectrum and residual spectrum,and the continuous spectrum are all symmetric with respect to the imaginary axis of the complex plane. Moreover,it is proved that the residual spectrum does not contain any pair of points symmetric with respect to the imaginary axis;and a complete characterization of the residual spectrum in terms of the point spectrum is then given.As applications of these structure results,we obtain several necessary and sufficient conditions for the residual spectrum of a class of infinite dimensional Hamiltonian operators to be empty. 展开更多
关键词 non-self-adjoint operator infinite dimensional Hamiltonian operator structure of spectrum 47A10 47B99
原文传递
Error Estimations, Error Computations, and Convergence Rates in FEM for BVPs
2
作者 Karan S. Surana A. D. Joy J. N. Reddy 《Applied Mathematics》 2016年第12期1359-1407,共49页
This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential o... This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential operators. A posteriori error estimates are discussed in context with local approximations in higher order scalar product spaces. A posteriori error computational framework (without the knowledge of theoretical solution) is presented for all BVPs regardless of the method of approximation employed in constructing the integral form. This enables computations of local errors as well as the global errors in the computed finite element solutions. The two most significant and essential aspects of the research presented in this paper that enable all of the features described above are: 1) ensuring variational consistency of the integral form(s) resulting from the methods of approximation for self adjoint, non-self adjoint, and nonlinear differential operators and 2) choosing local approximations for the elements of a discretization in a subspace of a higher order scalar product space that is minimally conforming, hence ensuring desired global differentiability of the approximations over the discretizations. It is shown that when the theoretical solution of a BVP is analytic, the a priori error estimate (in the asymptotic range, discussed in a later section of the paper) is independent of the method of approximation or the nature of the differential operator provided the resulting integral form is variationally consistent. Thus, the finite element processes utilizing integral forms based on different methods of approximation but resulting in VC integral forms result in the same a priori error estimate and convergence rate. It is shown that a variationally consistent (VC) integral form has best approximation property in some norm, conversely an integral form with best approximation property in some norm is variationally consistent. That is best approximation property of the integral form and the VC of the inte 展开更多
关键词 Finite Element Error Estimation Convergence Rate A Priori A Posteriori BVP Variationally Consistent Integral Form Variationally Inconsistent Integral Form Differential operator Classification self-adjoint non-self-adjoint nonlinear
下载PDF
Symmetry of the Point Spectrum of Upper Triangular Infinite Dimensional Hamiltonian Operators 被引量:2
3
作者 WANG Hua Alatancang HUANG dun die 《Journal of Mathematical Research and Exposition》 CSCD 2009年第5期907-912,共6页
In this paper, by using characterization of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H, a necessary and sufficient condition is obtained on the symmetry of σP(A) and σ1/... In this paper, by using characterization of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H, a necessary and sufficient condition is obtained on the symmetry of σP(A) and σ1/P(-A^*) with respect to the imaginary axis. Then the symmetry of the point spectrum of H is given, and several examples are presented to illustrate the results. 展开更多
关键词 non-self-adjoint operator infinite dimensional Hamiltonian operator point spectrum symmetry.
下载PDF
关于非自伴算子D^4+X~α+iX~β的极限点性质
4
作者 范漪涵 孙长银 《三峡大学学报(人文社会科学版)》 1998年第3期11-16,共6页
本文解决了一般的非自伴问题:如果L=(-1)kDkPkDk是极限点的,M是一个阶数不超过2n的微分算子,L+iM如何能保持极限点的性质。
关键词 平均亏指数 Lagrange双线性型 Goldberg不等式 非自伴算子 摄动定理
下载PDF
上三角无穷维Hamilton算子的剩余谱
5
作者 王华 阿拉坦仓 黄俊杰 《数学的实践与认识》 CSCD 北大核心 2010年第3期195-201,共7页
将点谱划分为四个部分,得到上三角无穷维Hamilton算子的点谱σ_p(H)关于虚轴对称的充要条件.在此基础上,结合无穷维Hamilton算子的谱结构,得到无穷维Hamilton算子剩余谱的完全描述,从而实现了利用其内部算子刻画剩余谱.
关键词 非自伴算子 无穷维HAMILTON算子 点谱 剩余谱
原文传递
非自伴Jacobi-Gribov算子的谱分析及其广义特征向量的渐近分析(英文) 被引量:1
6
作者 Abdelkader Intissar 《数学进展》 CSCD 北大核心 2015年第3期335-353,共19页
考虑对角元为q_n=μn,次对角元为α_n=iλn n+1^(1/2)而的非自伴无界Jacobi-Gribov矩阵,其中μ和λ为实数(μ为坡密子截距,λ为三坡密耦合量),i^2=-1.本文主要目的是研究Jacobi-Gribov矩阵广义特征向量的渐近性,并对[Comm.Math.Phys.,19... 考虑对角元为q_n=μn,次对角元为α_n=iλn n+1^(1/2)而的非自伴无界Jacobi-Gribov矩阵,其中μ和λ为实数(μ为坡密子截距,λ为三坡密耦合量),i^2=-1.本文主要目的是研究Jacobi-Gribov矩阵广义特征向量的渐近性,并对[Comm.Math.Phys.,1987,113(2):263-297]中的一些结果给出了新的证明.同时详细分析了这一算子的谱. 展开更多
关键词 Jacobi-Gribov矩阵 非自伴Gribov算子 Bargmann空间 渐近分析
原文传递
非自伴情形下时滞抛物方程的惯性流形 被引量:1
7
作者 朱健民 李祥 黄建华 《国防科技大学学报》 EI CAS CSCD 北大核心 2006年第3期120-123,共4页
利用Lyapunov-Perron方法在适当的谱间隙条件和适当小的时滞假设下,证明了一类非自伴算子情形下半线性时滞抛物方程惯性流形的存在性。
关键词 非自伴算子 时滞抛物方程 惯性流形
下载PDF
BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES 被引量:1
8
作者 闫雪芳 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期891-904,共14页
Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL ge... Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1. 展开更多
关键词 Stein's square function non-negative self-adjoint operator Hardy spaces Davies- Gaffney estimate Plancherel type estimate
下载PDF
狄氏型及其在数学物理中的应用 被引量:1
9
作者 马志明 《数学进展》 CSCD 北大核心 1993年第1期46-68,共23页
简介狄氏型理论。该理论已成为紧密联系解析位势论与马氏过程理论的强有力数学工具,并因此在数学与物理中有许多应用。
关键词 狄利克雷型 数学 物理 马氏过程
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部