The characteristics and possible causes of changes in persistent precipitation(PP) and non-persistent precipitation(NPP) over South China during flood season are investigated using daily precipitation data from 63...The characteristics and possible causes of changes in persistent precipitation(PP) and non-persistent precipitation(NPP) over South China during flood season are investigated using daily precipitation data from 63 stations in South China and NCEP/NCAR reanalysis data from 1961 to 2010. This investigation is performed using the Kendall's tau linear trend analysis, correlation analysis, abrupt climate change analysis, wavelet analysis, and composite analysis techniques. The results indicate that PP dominates total precipitation over South China throughout the year. The amounts of PP and NPP during flood season vary primarily on a 2–5-yr oscillation. This oscillation is more prominent during the early flood season(EFS; April–June). NPP has increased significantly over the past 50 years while PP has increased slightly during the whole flood season. These trends are mainly due to a significant increase in NPP during the EFS and a weak increase in PP during the late flood season(LFS; July–September). The contribution of EFS NPP to total flood season precipitation has increased significantly while the contribution of EFS PP has declined. The relative contributions of both types of precipitation during LFS have not changed significantly. The increase in EFS NPP over South China is likely related to the combined efects of a stronger supply of cold air from the north and a weaker supply of warm, moist air from the south. The increase in NPP amount may also be partially attributable to a reduction in the stability of the atmosphere over South China.展开更多
In this study, based on daily gage precipitation data of 2480 stations from 1961 to 2016, the summer (JuneeAugust) extreme precipitationevent was defined using the 95th percentile, and the changes in persistent (la...In this study, based on daily gage precipitation data of 2480 stations from 1961 to 2016, the summer (JuneeAugust) extreme precipitationevent was defined using the 95th percentile, and the changes in persistent (last for at least 2 d) and non-persistent (1 d) extreme precipitation inChina were analyzed. The results indicate that under global warming, the contribution of extreme precipitation to total summer precipitationincreased in most areas of China, but it decreased in the central part of Inner Mongolia and the Sichuan Basin. In North and Southwest China,both persistent and non-persistent extreme precipitation decreased; the decreasing trend of persistent extreme precipitation was more prominent;thus, extreme precipitation event occurred more as non-persistent event. Meanwhile, in the Yangtze River Basin and South China, both types ofextreme precipitation increased particularly the persistent extreme precipitation; persistent extreme precipitation occurred more compared withnon-persistent events.展开更多
We compared the regional synoptic patterns and local meteorological conditions during persistent and non-persistent pollution events in Beijing using US NCEP–Department of Energy reanalysis outputs and observations f...We compared the regional synoptic patterns and local meteorological conditions during persistent and non-persistent pollution events in Beijing using US NCEP–Department of Energy reanalysis outputs and observations from meteorological stations. The analysis focused on the impacts of high-frequency(period 〈 90 days) variations in meteorological conditions on persistent pollution events(those lasting for at least 3 days). Persistent pollution events tended to occur in association with slow-moving weather systems producing stagnant weather conditions, whereas rapidly moving weather systems caused a dramatic change in the local weather conditions so that the pollution event was short-lived. Although Beijing was under the influence of anomalous southerly winds in all four seasons during pollution events, notable differences were identified in the regional patterns of sea-level pressure and local anomalies in relative humidity among persistent pollution events in different seasons. A region of lower pressure was present to the north of Beijing in spring, fall, and winter, whereas regions of lower and higher pressures were observed northwest and southeast of Beijing, respectively, in summer. The relative humidity near Beijing was higher in fall and winter, but lower in spring and summer. These differences may explain the seasonal dependence of the relationship between air pollution and the local meteorological variables. Our analysis showed that the temperature inversion in the lower troposphere played an important part in the occurrence of air pollution under stagnant weather conditions.Some results from this study are based on a limited number of events and thus require validation using more data.展开更多
Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones aro...Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.展开更多
For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the b...For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the bondedparticle model. The microscopic parameters which can reflect the macroscopic mechanical properties and failure behavior of artificial jointed specimens are firstly calibrated. Then, the influence of joint inclination and confining pressure on stress-strain curves, crack patterns, and contact force distributions of jointed rock are investigated. The simulation results show that both the compressive strength and elastic modulus of the specimens increase with increasing confining pressure, and these two mechanical parameters decrease first and then increase with the increase of joints inclination. The sensitivity of strength and elastic modulus to confining pressure is not the same in different joints inclinations, which has the least impact on specimens with α=90°. Under low confining pressure, the failure modes are controlled by the joint inclination. As the confining pressure increased, the initiation and propagation of tensile crack are gradually inhibited, and the failure mode is transferred from tensile failure to shear-compression failure. Finally, the reinforcement effect of prestressed bolt support on engineering fractured rock mass is discussed.展开更多
Plant viruses are mainly transmitted by insect vectors in the non-persistent,semi-persistent,or persistent modes.In the non-persistent mode,plant viruses are retained in the stylets of their insect vectors.In the semi...Plant viruses are mainly transmitted by insect vectors in the non-persistent,semi-persistent,or persistent modes.In the non-persistent mode,plant viruses are retained in the stylets of their insect vectors.In the semi-persistent mode,plant viruses are carried to vector foreguts or salivary glands,but they cannot spread to salivary glands.In the persistent mode,plant viruses are retained in vector guts and can spread to salivary glands.In the non-persistent and semi-persistent modes,plant viruses are retained for a short time and cannot enter the hemolymph of insect vectors,whereas in the persistent mode,plant viruses are retained for a relatively long time and can be found in the hemolymph.Here,we reviewed recent studies that uncovered molecular mechanisms of how plant viruses manipulate host traits for efficient transmission by insect vectors.Normally,plants that are infected with viruses,regardless of the transmission mode,tend to release more attractive volatiles to vectors.However,plant defensive systems are regulated differently by viruses in these three modes.In the non-persistent mode,virus infections significantly induce plant defense responses,which probably trigger vectors(e.g.,winged aphids)to disperse and transmit viruses in a short time.In the semi-persistent mode,virus infections frequently suppress plant defense responses,resulting in an increase of vector population and facilitating viral transmissions during vector outbreaks.In the persistent mode,virus infections reduce plant defense responses and manipulate plant traits to become suitable feeding sites in a relatively long period of time.Understanding the underlying mechanisms of virus–vector–plant interactions will lay a foundation for preventing virus transmission.展开更多
The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior ...The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior around a circular opening in a rock mass having non-persistent open joints using PFC software package. A parallel-bond stress corrosion(PSC) approach was incorporated to drive the failure of rock mass around the circular opening, such that the whole progressive failure process after excavation was reproduced. Based on the determined micro parameters for intact material and joint segments, the failure process around the circular opening agrees very well with that obtained through laboratory experiment. A subsequent parametric study was then carried out to look into the influence of lateral pressure coefficient, joint dip angle and joint persistency on the failure pattern and crack evolution of the rock mass around the circular opening. Three failure patterns identified are step path failure, planar failure and rotation failure depending on the lateral pressure coefficient. Moreover, the increment of joint dip angle and joint persistency aggravates the rock mass failure around the opening. This study offers guideline on stability estimation of underground excavations.展开更多
Discontinuities are often considered as important factors responsible for the instability caused by shear failure in engineering rock mass,and energy-driven instability is the root cause of rock failure.However,few st...Discontinuities are often considered as important factors responsible for the instability caused by shear failure in engineering rock mass,and energy-driven instability is the root cause of rock failure.However,few studies focus on the energy evolution during the failure process using a three-dimensional(3D)numerical model.In this study,a series of laboratory direct shear tests on rock-like samples is numer-ically simulated using bonded particle models(BPMs)with multiple combinations of discontinuous in the particle flow code(PFC3D),in which the location and size of the particles conform to the uniform distribution.The effects of joint row number and inclination on the stress-strain characteristics and failure mode of rock were studied from the perspective of microcrack growth and energy evolution.The results showed that,when the number of joint rows Nr>1,the shear failure region does not change with the increase of Nr for the type B(2-columnn multiple-row at center)and the type C(2-column multiple-row at edge)as compared to the type A(1-column multiple-row at center)joint models.Notably,joints significantly increase the post-peak energy dissipation but have little effect on the proportion of energy before the peak.Friction consumes most of the energy while kinetic energy accounts for less than 1%of total energy during the shear process.Peak elastic strain energy follows the variation trend of peak shear displacement.The development and accumulation of microcracks directly affect the energy dissipation,and there is a significant linear relationship between the cumulative number of critical microcracks and the critical dissipated energy at the failure,when the dip direction of joints is opposite to the shear direction,more microcracks will be accumulated at the peak time,resulting in more energy dissipation.The results contribute to deeply understanding the shear failure process of non-persistent jointed mass.展开更多
A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the genera...A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the generated rock blocks. The recently developed numerical manifold method (NMM) has potential for modelling such a complete failure process. However, the NMM suffers one limitation, i.e., unexpected material domain area change occurs in rotation modelling. This problem can not be easily solved because the rigid body rotation is not represented explicitly in the NMM. The discontinuous deformation analysis (DDA) is specially de- veloped for modelling discrete block systems. The rotation- induced material area change in the DDA modelling can be avoided conveniently because the rigid body rotation is represented in an explicit form. In this paper, a transition technique is proposed and implemented to convert a NMMmodelling to a DDA modelling so as to simulate a complete rock failure process entirely by means of the two methods, in which the NMM is adopted to model the early fracturing as well as the transition from continua to discontinua, while the DDA is adopted to model the subsequent motion of the generated rock blocks. Such a numerical approach also im- proves the simulation efficiency greatly as compared with a complete NMM modelling approach. The fracturing of a rock slab with pre-existing non-persistent joints located on a slope crest and the induced rockfall process are simulated. The validity of the modelling transition from the NMM to the DDA is verified and the applicability of the proposed nu- merical approach is investigated.展开更多
In this paper,a new recursive least squares(RLS)identification algorithm with variable-direction forgetting(VDF)is proposed for multi-output systems.The objective is to enhance parameter estimation performance under n...In this paper,a new recursive least squares(RLS)identification algorithm with variable-direction forgetting(VDF)is proposed for multi-output systems.The objective is to enhance parameter estimation performance under non-persistent excitation.The proposed algorithm performs oblique projection decomposition of the information matrix,such that forgetting is applied only to directions where new information is received.Theoretical proofs show that even without persistent excitation,the information matrix remains lower and upper bounded,and the estimation error variance converges to be within a finite bound.Moreover,detailed analysis is made to compare with a recently reported VDF algorithm that exploits eigenvalue decomposition(VDF-ED).It is revealed that under non-persistent excitation,part of the forgotten subspace in the VDF-ED algorithm could discount old information without receiving new data,which could produce a more ill-conditioned information matrix than our proposed algorithm.Numerical simulation results demonstrate the efficacy and advantage of our proposed algorithm over this recent VDF-ED algorithm.展开更多
A virus disease of garden sage (Salvia splendens Ker-Gawl.) was observed and characterized showing symptoms of severe mosaic, mottling and distortion of leaves being remain shortened and growth retarded. The virus was...A virus disease of garden sage (Salvia splendens Ker-Gawl.) was observed and characterized showing symptoms of severe mosaic, mottling and distortion of leaves being remain shortened and growth retarded. The virus was transmitted to the healthy plants of Salvia spp. as well as many other hosts by mechanical inoculation, Myzus persicae Sulzer and Aphis gossypii Glover transmit the virus in non-persistent manner. Purified sample in EM showed spherical particles c.28 nm in diameter. DAC- ELISA [1] was performed with crude sap, specific polyclonal anti-serum (PVAS 242a, ATCC, USA) and alkaline phosphatase-linked secondary antibodies (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH or DSMZ, Germany). The mean absorbance at 405 nm for negative and positive controls were 0.061 ± 0.008 and 0.349 ± 0.003 respectively, while infected samples were recorded four-times more than the value of negative controls with values that ranged between 0.289 ± 0.005 and 0.325 ± 0.003. RT-PCR was performed using total RNA as templates and CMV Coat Protein (CP) gene specific reverse and forward primers, gel was electrophoresed on 1% agarose, an amplification of expected size 650 bp fragment was obtained only in the infected sample which proved that the present virus is a strain of CMV, the type member of the genus cucumovirus belonging to the family Bromoviridae.展开更多
基金Supported by the National (Key) Basic Research and Development (973) Program of China (2012CB417205)National Science and Technology Support Program of China (2013BAK05B03)
文摘The characteristics and possible causes of changes in persistent precipitation(PP) and non-persistent precipitation(NPP) over South China during flood season are investigated using daily precipitation data from 63 stations in South China and NCEP/NCAR reanalysis data from 1961 to 2010. This investigation is performed using the Kendall's tau linear trend analysis, correlation analysis, abrupt climate change analysis, wavelet analysis, and composite analysis techniques. The results indicate that PP dominates total precipitation over South China throughout the year. The amounts of PP and NPP during flood season vary primarily on a 2–5-yr oscillation. This oscillation is more prominent during the early flood season(EFS; April–June). NPP has increased significantly over the past 50 years while PP has increased slightly during the whole flood season. These trends are mainly due to a significant increase in NPP during the EFS and a weak increase in PP during the late flood season(LFS; July–September). The contribution of EFS NPP to total flood season precipitation has increased significantly while the contribution of EFS PP has declined. The relative contributions of both types of precipitation during LFS have not changed significantly. The increase in EFS NPP over South China is likely related to the combined efects of a stronger supply of cold air from the north and a weaker supply of warm, moist air from the south. The increase in NPP amount may also be partially attributable to a reduction in the stability of the atmosphere over South China.
文摘In this study, based on daily gage precipitation data of 2480 stations from 1961 to 2016, the summer (JuneeAugust) extreme precipitationevent was defined using the 95th percentile, and the changes in persistent (last for at least 2 d) and non-persistent (1 d) extreme precipitation inChina were analyzed. The results indicate that under global warming, the contribution of extreme precipitation to total summer precipitationincreased in most areas of China, but it decreased in the central part of Inner Mongolia and the Sichuan Basin. In North and Southwest China,both persistent and non-persistent extreme precipitation decreased; the decreasing trend of persistent extreme precipitation was more prominent;thus, extreme precipitation event occurred more as non-persistent event. Meanwhile, in the Yangtze River Basin and South China, both types ofextreme precipitation increased particularly the persistent extreme precipitation; persistent extreme precipitation occurred more compared withnon-persistent events.
基金Supported by the National Natural Science Foundation of China(41475081,41530425,41425019,and 41661144016)State Oceanic Administration Public Science and Technology Research Funds Projects of Ocean(201505013)
文摘We compared the regional synoptic patterns and local meteorological conditions during persistent and non-persistent pollution events in Beijing using US NCEP–Department of Energy reanalysis outputs and observations from meteorological stations. The analysis focused on the impacts of high-frequency(period 〈 90 days) variations in meteorological conditions on persistent pollution events(those lasting for at least 3 days). Persistent pollution events tended to occur in association with slow-moving weather systems producing stagnant weather conditions, whereas rapidly moving weather systems caused a dramatic change in the local weather conditions so that the pollution event was short-lived. Although Beijing was under the influence of anomalous southerly winds in all four seasons during pollution events, notable differences were identified in the regional patterns of sea-level pressure and local anomalies in relative humidity among persistent pollution events in different seasons. A region of lower pressure was present to the north of Beijing in spring, fall, and winter, whereas regions of lower and higher pressures were observed northwest and southeast of Beijing, respectively, in summer. The relative humidity near Beijing was higher in fall and winter, but lower in spring and summer. These differences may explain the seasonal dependence of the relationship between air pollution and the local meteorological variables. Our analysis showed that the temperature inversion in the lower troposphere played an important part in the occurrence of air pollution under stagnant weather conditions.Some results from this study are based on a limited number of events and thus require validation using more data.
基金supported by the National Basic Research Program of China (No.2013CB036003)the Graduate Research and Innovation Program of Jiangsu Province (No.CXLX13_943)
文摘Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.
基金Projects(52004145,51904164)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE119)supported by the Natural Science Foundation of Shandong Province,ChinaProject(SICGM202107)supported by the Open Fund of the Key Laboratory of Mining Disaster Prevention and Control,China。
文摘For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the bondedparticle model. The microscopic parameters which can reflect the macroscopic mechanical properties and failure behavior of artificial jointed specimens are firstly calibrated. Then, the influence of joint inclination and confining pressure on stress-strain curves, crack patterns, and contact force distributions of jointed rock are investigated. The simulation results show that both the compressive strength and elastic modulus of the specimens increase with increasing confining pressure, and these two mechanical parameters decrease first and then increase with the increase of joints inclination. The sensitivity of strength and elastic modulus to confining pressure is not the same in different joints inclinations, which has the least impact on specimens with α=90°. Under low confining pressure, the failure modes are controlled by the joint inclination. As the confining pressure increased, the initiation and propagation of tensile crack are gradually inhibited, and the failure mode is transferred from tensile failure to shear-compression failure. Finally, the reinforcement effect of prestressed bolt support on engineering fractured rock mass is discussed.
基金the Hunan Natural Science Foundation(Grant No.2019JJ30014)National Natural Science Foundation of China(Grant Nos.31872932 and 31571981)Agriculture Research System of China(Grant No.CARS-23-D-02)。
文摘Plant viruses are mainly transmitted by insect vectors in the non-persistent,semi-persistent,or persistent modes.In the non-persistent mode,plant viruses are retained in the stylets of their insect vectors.In the semi-persistent mode,plant viruses are carried to vector foreguts or salivary glands,but they cannot spread to salivary glands.In the persistent mode,plant viruses are retained in vector guts and can spread to salivary glands.In the non-persistent and semi-persistent modes,plant viruses are retained for a short time and cannot enter the hemolymph of insect vectors,whereas in the persistent mode,plant viruses are retained for a relatively long time and can be found in the hemolymph.Here,we reviewed recent studies that uncovered molecular mechanisms of how plant viruses manipulate host traits for efficient transmission by insect vectors.Normally,plants that are infected with viruses,regardless of the transmission mode,tend to release more attractive volatiles to vectors.However,plant defensive systems are regulated differently by viruses in these three modes.In the non-persistent mode,virus infections significantly induce plant defense responses,which probably trigger vectors(e.g.,winged aphids)to disperse and transmit viruses in a short time.In the semi-persistent mode,virus infections frequently suppress plant defense responses,resulting in an increase of vector population and facilitating viral transmissions during vector outbreaks.In the persistent mode,virus infections reduce plant defense responses and manipulate plant traits to become suitable feeding sites in a relatively long period of time.Understanding the underlying mechanisms of virus–vector–plant interactions will lay a foundation for preventing virus transmission.
基金Project(2013CB036003)supported by the National Basic Research Program of ChinaProjects(51374198,51134001,51404255)supported by the National Natural Science Foundation of ChinaProject(BK20150005)supported by the Natural Science Foundation of Jiangsu Province for Distinguished Youth Scholar,China
文摘The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior around a circular opening in a rock mass having non-persistent open joints using PFC software package. A parallel-bond stress corrosion(PSC) approach was incorporated to drive the failure of rock mass around the circular opening, such that the whole progressive failure process after excavation was reproduced. Based on the determined micro parameters for intact material and joint segments, the failure process around the circular opening agrees very well with that obtained through laboratory experiment. A subsequent parametric study was then carried out to look into the influence of lateral pressure coefficient, joint dip angle and joint persistency on the failure pattern and crack evolution of the rock mass around the circular opening. Three failure patterns identified are step path failure, planar failure and rotation failure depending on the lateral pressure coefficient. Moreover, the increment of joint dip angle and joint persistency aggravates the rock mass failure around the opening. This study offers guideline on stability estimation of underground excavations.
基金supported by the National Natural Science Foundation of China(Grant No.41825018)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Discontinuities are often considered as important factors responsible for the instability caused by shear failure in engineering rock mass,and energy-driven instability is the root cause of rock failure.However,few studies focus on the energy evolution during the failure process using a three-dimensional(3D)numerical model.In this study,a series of laboratory direct shear tests on rock-like samples is numer-ically simulated using bonded particle models(BPMs)with multiple combinations of discontinuous in the particle flow code(PFC3D),in which the location and size of the particles conform to the uniform distribution.The effects of joint row number and inclination on the stress-strain characteristics and failure mode of rock were studied from the perspective of microcrack growth and energy evolution.The results showed that,when the number of joint rows Nr>1,the shear failure region does not change with the increase of Nr for the type B(2-columnn multiple-row at center)and the type C(2-column multiple-row at edge)as compared to the type A(1-column multiple-row at center)joint models.Notably,joints significantly increase the post-peak energy dissipation but have little effect on the proportion of energy before the peak.Friction consumes most of the energy while kinetic energy accounts for less than 1%of total energy during the shear process.Peak elastic strain energy follows the variation trend of peak shear displacement.The development and accumulation of microcracks directly affect the energy dissipation,and there is a significant linear relationship between the cumulative number of critical microcracks and the critical dissipated energy at the failure,when the dip direction of joints is opposite to the shear direction,more microcracks will be accumulated at the peak time,resulting in more energy dissipation.The results contribute to deeply understanding the shear failure process of non-persistent jointed mass.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (20090101120057)the Scientific Research Fund of Zhejiang Provincial Education Department (Y200909163)
文摘A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the generated rock blocks. The recently developed numerical manifold method (NMM) has potential for modelling such a complete failure process. However, the NMM suffers one limitation, i.e., unexpected material domain area change occurs in rotation modelling. This problem can not be easily solved because the rigid body rotation is not represented explicitly in the NMM. The discontinuous deformation analysis (DDA) is specially de- veloped for modelling discrete block systems. The rotation- induced material area change in the DDA modelling can be avoided conveniently because the rigid body rotation is represented in an explicit form. In this paper, a transition technique is proposed and implemented to convert a NMMmodelling to a DDA modelling so as to simulate a complete rock failure process entirely by means of the two methods, in which the NMM is adopted to model the early fracturing as well as the transition from continua to discontinua, while the DDA is adopted to model the subsequent motion of the generated rock blocks. Such a numerical approach also im- proves the simulation efficiency greatly as compared with a complete NMM modelling approach. The fracturing of a rock slab with pre-existing non-persistent joints located on a slope crest and the induced rockfall process are simulated. The validity of the modelling transition from the NMM to the DDA is verified and the applicability of the proposed nu- merical approach is investigated.
基金supported by the National Natural Science Foundation of China(61803163,61991414,61873301)。
文摘In this paper,a new recursive least squares(RLS)identification algorithm with variable-direction forgetting(VDF)is proposed for multi-output systems.The objective is to enhance parameter estimation performance under non-persistent excitation.The proposed algorithm performs oblique projection decomposition of the information matrix,such that forgetting is applied only to directions where new information is received.Theoretical proofs show that even without persistent excitation,the information matrix remains lower and upper bounded,and the estimation error variance converges to be within a finite bound.Moreover,detailed analysis is made to compare with a recently reported VDF algorithm that exploits eigenvalue decomposition(VDF-ED).It is revealed that under non-persistent excitation,part of the forgotten subspace in the VDF-ED algorithm could discount old information without receiving new data,which could produce a more ill-conditioned information matrix than our proposed algorithm.Numerical simulation results demonstrate the efficacy and advantage of our proposed algorithm over this recent VDF-ED algorithm.
文摘A virus disease of garden sage (Salvia splendens Ker-Gawl.) was observed and characterized showing symptoms of severe mosaic, mottling and distortion of leaves being remain shortened and growth retarded. The virus was transmitted to the healthy plants of Salvia spp. as well as many other hosts by mechanical inoculation, Myzus persicae Sulzer and Aphis gossypii Glover transmit the virus in non-persistent manner. Purified sample in EM showed spherical particles c.28 nm in diameter. DAC- ELISA [1] was performed with crude sap, specific polyclonal anti-serum (PVAS 242a, ATCC, USA) and alkaline phosphatase-linked secondary antibodies (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH or DSMZ, Germany). The mean absorbance at 405 nm for negative and positive controls were 0.061 ± 0.008 and 0.349 ± 0.003 respectively, while infected samples were recorded four-times more than the value of negative controls with values that ranged between 0.289 ± 0.005 and 0.325 ± 0.003. RT-PCR was performed using total RNA as templates and CMV Coat Protein (CP) gene specific reverse and forward primers, gel was electrophoresed on 1% agarose, an amplification of expected size 650 bp fragment was obtained only in the infected sample which proved that the present virus is a strain of CMV, the type member of the genus cucumovirus belonging to the family Bromoviridae.